Changes

Line 2,167: Line 2,167:  
|}
 
|}
   −
<pre>
+
In the interpretation of the cactus language for propositional logic that we are using here, an expression of the form <math>\texttt{(p(q))}</math> expresses a ''conditional'', an ''implication'', or an ''if-then'' proposition, commonly read in one of the following ways:
In the interpretation of the cactus language for propositional logic
+
 
that we are using here, an expression of the form "(p (q))" expresses
+
{| align="center" cellpadding="8" width="90%"
a conditional, an implication, or an if-then proposition, commonly read
+
|
as:  "not p without q", "if p then q", "p implies q", "p => q", and so on.
+
<math>\begin{array}{l}
 +
\operatorname{not}~ p ~\operatorname{without}~ q
 +
\\[4pt]
 +
p ~\operatorname{implies}~ q
 +
\\[4pt]
 +
\operatorname{if}~ p ~\operatorname{then}~ q
 +
\\[4pt]
 +
p \Rightarrow q
 +
\end{array}</math>
 +
|}
   −
A text string expression of the form "(p (q))" corresponds
+
A text string expression of the form <math>\texttt{(p(q))}</math> corresponds to a graph-theoretic data-structure of the following form:
to a graph-theoretic data-structure of the following form:
      +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 2,186: Line 2,195:  
|              ( p ( q ))              |
 
|              ( p ( q ))              |
 
o---------------------------------------o
 
o---------------------------------------o
 +
</pre>
    
Taken together, the Mediate Conditions state the following:
 
Taken together, the Mediate Conditions state the following:
    +
<pre>
 
   If M at p_0 is in state q_#, then M at p_1 is in state q_#, and
 
   If M at p_0 is in state q_#, then M at p_1 is in state q_#, and
 
   If M at p_0 is in state q_*, then M at p_1 is in state q_*, and
 
   If M at p_0 is in state q_*, then M at p_1 is in state q_*, and
12,080

edits