Line 1,797: |
Line 1,797: |
| The relation <math>\operatorname{Der}(L)</math> is defined and the notation <math>x ~\overset{L}{=}~ y</math> is meaningful in every situation where the corresponding denotation operator <math>\operatorname{Den}(-,-)</math> makes sense, but it remains to check whether this relation enjoys the properties of an equivalence relation. | | The relation <math>\operatorname{Der}(L)</math> is defined and the notation <math>x ~\overset{L}{=}~ y</math> is meaningful in every situation where the corresponding denotation operator <math>\operatorname{Den}(-,-)</math> makes sense, but it remains to check whether this relation enjoys the properties of an equivalence relation. |
| | | |
− | # Reflexive property. Is it true that <math>x ~\overset{L}{=}~ x</math> for every <math>x \in S = I</math>? By definition, <math>x ~\overset{L}{=}~ x</math> if and only if <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, x).</math> Thus, the reflexive property holds in any setting where the denotations <math>\operatorname{Den}(L, x)</math> are defined for all signs <math>x\!</math> in the syntactic domain of <math>R.\!</math>
| + | <ol style="list-style-type:decimal"> |
− | # Symmetric property. Does <math>x ~\overset{L}{=}~ y ~\Rightarrow~ y ~\overset{L}{=}~ x</math> for all <math>x, y \in S</math>? In effect, does <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, y)</math> imply <math>\operatorname{Den}(L, y) = \operatorname{Den}(L, x)</math> for all signs <math>x\!</math> and <math>y\!</math> in the syntactic domain <math>S\!</math>? Yes, so long as the sets <math>\operatorname{Den}(L, x)</math> and <math>\operatorname{Den}(L, y)</math> are well-defined, a fact which is already being assumed.
| + | |
− | # Transitive property. Does <math>x ~\overset{L}{=}~ y</math> and <math>y ~\overset{L}{=}~ z</math> imply <math>x ~\overset{L}{=}~ z</math> for all <math>x, y, z \in S</math>? To belabor the point, does <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, y)</math> and <math>\operatorname{Den}(L, y) = \operatorname{Den}(L, z)</math> imply <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, z)</math> for all <math>x, y, z \in S</math>? Yes, again, under the stated conditions.
| + | <li> |
| + | <p>'''Reflexive property.'''</p> |
| + | |
| + | <p>Is it true that <math>x ~\overset{L}{=}~ x</math> for every <math>x \in S = I</math>?</p> |
| + | |
| + | <p> By definition, <math>x ~\overset{L}{=}~ x</math> if and only if <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, x).</math></p> |
| + | |
| + | <p>Thus, the reflexive property holds in any setting where the denotations <math>\operatorname{Den}(L, x)</math> are defined for all signs <math>x\!</math> in the syntactic domain of <math>R.\!</math></p></li> |
| + | |
| + | <li> |
| + | <p>'''Symmetric property.'''</p> |
| + | |
| + | <p>Does <math>x ~\overset{L}{=}~ y ~\Rightarrow~ y ~\overset{L}{=}~ x</math> for all <math>x, y \in S</math>?</p> |
| + | |
| + | <p>In effect, does <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, y)</math> imply <math>\operatorname{Den}(L, y) = \operatorname{Den}(L, x)</math> for all signs <math>x\!</math> and <math>y\!</math> in the syntactic domain <math>S\!</math>?</p> |
| + | |
| + | <p>Yes, so long as the sets <math>\operatorname{Den}(L, x)</math> and <math>\operatorname{Den}(L, y)</math> are well-defined, a fact which is already being assumed.</p></li> |
| + | |
| + | <li> |
| + | <p>'''Transitive property.'''</p> |
| + | |
| + | <p>Does <math>x ~\overset{L}{=}~ y</math> and <math>y ~\overset{L}{=}~ z</math> imply <math>x ~\overset{L}{=}~ z</math> for all <math>x, y, z \in S</math>?</p> |
| + | |
| + | <p>To belabor the point, does <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, y)</math> and <math>\operatorname{Den}(L, y) = \operatorname{Den}(L, z)</math> imply <math>\operatorname{Den}(L, x) = \operatorname{Den}(L, z)</math> for all <math>x, y, z \in S</math>?</p> |
| + | |
| + | <p>Yes, once again, under the stated conditions.</p></li> |
| + | |
| + | </ol> |
| | | |
| It should be clear at this point that any question about the equiference of signs reduces to a question about the equality of sets, specifically, the sets that are indexed by these signs. As a result, so long as these sets are well-defined, the issue of whether equiference relations induce equivalence relations on their syntactic domains is almost as trivial as it initially appears. | | It should be clear at this point that any question about the equiference of signs reduces to a question about the equality of sets, specifically, the sets that are indexed by these signs. As a result, so long as these sets are well-defined, the issue of whether equiference relations induce equivalence relations on their syntactic domains is almost as trivial as it initially appears. |