Changes

→‎Derived Equivalence Relations: mathematical markup + editing note
Line 1,619: Line 1,619:  
<br>
 
<br>
   −
The dyadic relation <math>L_{IS}\!</math> that makes up the converse of the connotative relation <math>L_{SI}\!</math> can be defined directly in the following fashion:
+
'''Editing Note.'''  Need a discussion of converse relations here.  Perhaps it would work to introduce the operators that Peirce used for the converse of a dyadic relative <math>\ell,</math> namely, <math>K\ell ~=~ k\!\cdot\!\ell ~=~ \breve\ell.</math>
 +
 
 +
The dyadic relation <math>L_{IS}\!</math> that is the converse of the connotative relation <math>L_{SI}\!</math> can be defined directly in the following fashion:
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
| <math>\widehat{\operatorname{Con} (L)} ~=~ L_{IS} ~=~ \{ (i, s) \in I \times S ~:~ (o, s, i) \in L ~\text{for some}~ o \in O \}.</math>
+
| <math>\overset{\smile}{\operatorname{Con}(L)} ~=~ L_{IS} ~=~ \{ (i, s) \in I \times S ~:~ (o, s, i) \in L ~\text{for some}~ o \in O \}.</math>
 
|}
 
|}
    
A few of the many different expressions for this concept are recorded in Definition&nbsp;9.
 
A few of the many different expressions for this concept are recorded in Definition&nbsp;9.
 +
 +
<br>
    
<pre>
 
<pre>
Line 1,649: Line 1,653:  
</pre>
 
</pre>
   −
<pre>
+
<br>
Recall the definition of Den(R), the denotative component of R, in the following form:
+
 
Den(R) = ROS  = {<o, s> C OxS : <o, s, i> C R for some i C I}.
+
Recall the definition of <math>\operatorname{Den} (L),</math> the denotative component of <math>L,\!</math> in the following form:
 +
 
 +
{| align="center" cellpadding="8" width="90%"
 +
| <math>\operatorname{Den} (L) ~=~ L_{OS} ~=~ \{ (o, s) \in O \times S ~:~ (o, s, i) \in L ~\text{for some}~ i \in I \}.</math>
 +
|}
    
Equivalent expressions for this concept are recorded in Definition 10.
 
Equivalent expressions for this concept are recorded in Definition 10.
    +
<br>
 +
 +
<pre>
 
Definition 10
 
Definition 10
  
12,080

edits