Line 2,239: |
Line 2,239: |
| ===Definition 4=== | | ===Definition 4=== |
| | | |
− | <pre> | + | <br> |
− | Definition 4
| |
| | | |
− | If X c U, | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px; text-align:center" |
| + | | width="80%" | |
| + | | width="20%" | <math>\text{Definition 4}\!</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\text{then}\!</math> |
| + | | <math>\text{the following are identical subsets of}~ X \times \underline\mathbb{B}:</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{D4a.}</math> |
| + | | width="80%" style="border-top:1px solid black" | <math>\upharpoonleft Q \upharpoonright</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{D3b.}</math> |
| + | | <math>\{ (x, y) \in X \times \underline\mathbb{B} ~:~ y ~=~ \downharpoonleft x \in Q \downharpoonright</math> |
| + | |} |
| + | |} |
| | | |
− | then the following are identical subsets of UxB:
| + | <br> |
− | | |
− | D4a. {X}
| |
− | | |
− | D4b. {<u, v> C UxB : v = [u C X]}
| |
− | </pre>
| |
| | | |
| ===Definition 5=== | | ===Definition 5=== |