Changes

→‎Syntactic Transformations: try nested table format
Line 2,855: Line 2,855:  
The use of the basic logical connectives can be expressed in the form of a STR as follows:
 
The use of the basic logical connectives can be expressed in the form of a STR as follows:
   −
<pre>
+
<br>
Logical Translation Rule 0
     −
If Sj is a sentence
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%"
about things in the universe U
+
|
 +
{| align="center" cellpadding="0" cellspacing="0" style="text-align:right" width="100%"
 +
|- style="height:48px"
 +
| width="98%" | <math>\text{Logical Translation Rule 0}\!</math>
 +
| width=2%"  | &nbsp;
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:48px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math>
 +
| width="80%" style="border-top:1px solid black" |
 +
<math>s_j ~\text{is a sentence about things in the universe X}</math>
 +
|- style="height:48px"
 +
| &nbsp;
 +
| <math>\text{and}\!</math>
 +
| <math>p_j ~\text{is a proposition about things in the universe X}</math>
 +
|- style="height:48px"
 +
| &nbsp;
 +
| <math>\text{such that:}\!</math>
 +
| &nbsp;
 +
|- style="height:48px"
 +
| &nbsp;
 +
| <math>\text{L0a.}\!</math>
 +
| <math>\downharpoonleft s_j \downharpoonright ~=~ p_j, ~\text{for all}~ j \in J,</math>
 +
|- style="height:48px"
 +
| &nbsp;
 +
| <math>\text{then}\!</math>
 +
| <math>\text{the following equations are true:}\!</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:56px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\text{L0b.}\!</math>
 +
| width="20%" style="border-top:1px solid black" |
 +
<math>\downharpoonleft \operatorname{Conc}_j^J s_j \downharpoonright</math>
 +
| width="10%" style="border-top:1px solid black" | <math>=\!</math>
 +
| width="20%" style="border-top:1px solid black" |
 +
<math>\operatorname{Conj}_j^J \downharpoonleft s_j \downharpoonright</math>
 +
| width="10%" style="border-top:1px solid black" | <math>=\!</math>
 +
| width="20%" style="border-top:1px solid black" |
 +
<math>\operatorname{Conj}_j^J p_j</math>
 +
|- style="height:56px"
 +
| &nbsp;
 +
| <math>\text{L0c.}\!</math>
 +
| <math>\downharpoonleft \operatorname{Surc}_j^J s_j \downharpoonright</math>
 +
| <math>=\!</math>
 +
| <math>\operatorname{Surj}_j^J \downharpoonleft s_j \downharpoonright</math>
 +
| <math>=\!</math>
 +
| <math>\operatorname{Surj}_j^J p_j</math>
 +
|}
 +
|}
   −
and Pj is a proposition
+
<br>
about things in the universe U
  −
 
  −
such that:
  −
 
  −
L0a. [Sj] = Pj, for all j C J,
  −
 
  −
then the following equations are true:
  −
 
  −
L0b. [ConcJj Sj]  =  ConjJj [Sj]  =  ConjJj Pj.
  −
 
  −
L0c. [SurcJj Sj]  =  SurjJj [Sj]  =  SurjJj Pj.
  −
</pre>
      
As a general rule, the application of a STR involves the recognition of an antecedent condition and the facilitation of a consequent condition.  The antecedent condition is a state whose initial expression presents a match, in a formal sense, to one of the sentences that are listed in the STR, and the consequent condition is achieved by taking its suggestions seriously, in other words, by following its sequence of equivalents and implicants to some other link in its chain.
 
As a general rule, the application of a STR involves the recognition of an antecedent condition and the facilitation of a consequent condition.  The antecedent condition is a state whose initial expression presents a match, in a formal sense, to one of the sentences that are listed in the STR, and the consequent condition is achieved by taking its suggestions seriously, in other words, by following its sequence of equivalents and implicants to some other link in its chain.
12,080

edits