Working from a structural description of the cactus language, or any suitable formal grammar for <math>\mathfrak{C} (\mathfrak{P}),</math> it is possible to give a recursive definition of the function called <math>\operatorname{Parse}</math> that maps each sentence in <math>\operatorname{PARCE} (\mathfrak{P})</math> to the corresponding graph in <math>\operatorname{PARC} (\mathfrak{P}).</math> One way to do this proceeds as follows:
<pre>
<pre>
Line 22:
Line 20:
Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
</pre>
</pre>
−
−
---
<ol style="list-style-type:decimal">
<ol style="list-style-type:decimal">
−
<li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the sequence of <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
+
<li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>