Line 1: |
Line 1: |
| + | ==Grammar Stuff== |
| + | |
| + | Working from a structural description of the cactus language, or any suitable formal grammar for <math>\mathfrak{C} (\mathfrak{P}),</math> it is possible to give a recursive definition of the function called <math>\operatorname{Parse}</math> that maps each sentence in <math>\operatorname{PARCE} (\mathfrak{P})</math> to the corresponding graph in <math>\operatorname{PARC} (\mathfrak{P}).</math> One way to do this proceeds as follows: |
| + | |
| + | <pre> |
| + | 1. The parse of the concatenation Conc^k of the k sentences S_j, |
| + | for j = 1 to k, is defined recursively as follows: |
| + | |
| + | a. Parse(Conc^0) = Node^0. |
| + | |
| + | b. For k > 0, |
| + | |
| + | Parse(Conc^k_j S_j) = Node^k_j Parse(S_j). |
| + | |
| + | 2. The parse of the surcatenation Surc^k of the k sentences S_j, |
| + | for j = 1 to k, is defined recursively as follows: |
| + | |
| + | a. Parse(Surc^0) = Lobe^0. |
| + | |
| + | b. For k > 0, |
| + | |
| + | Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j). |
| + | </pre> |
| + | |
| + | --- |
| + | |
| + | <ol style="list-style-type:decimal"> |
| + | |
| + | <li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the sequence of <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> |
| + | |
| + | <ol style="list-style-type:lower-alpha"> |
| + | |
| + | <li><math>\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.</math> |
| + | |
| + | <li> |
| + | <p>For <math>\ell > 1,\!</math></p> |
| + | |
| + | <p><math>\operatorname{Conc}_{j=1}^\ell s_j \ = \ \operatorname{Conc}_{j=1}^{\ell - 1} s_j \, \cdot \, s_\ell.</math></p></li> |
| + | |
| + | </ol> |
| + | |
| + | <li>The ''surcatenation'' <math>\operatorname{Surc}_{j=1}^k</math> of the sequence of <math>k\!</math> strings <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li> |
| + | |
| + | <ol style="list-style-type:lower-alpha"> |
| + | |
| + | <li><math>\operatorname{Surc}_{j=1}^1 s_j \ = \ ^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot \, s_1 \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></li> |
| + | |
| + | <li> |
| + | <p>For <math>\ell > 1,\!</math></p> |
| + | |
| + | <p><math>\operatorname{Surc}_{j=1}^\ell s_j \ = \ \operatorname{Surc}_{j=1}^{\ell - 1} s_j \, \cdot \, ( \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime} \, )^{-1} \, \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \, s_\ell \, \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math></p></li> |
| + | |
| + | </ol></ol> |
| + | |
| + | ==Table Stuff== |
| + | |
| + | <br> |
| + | |
| {| border="1" | | {| border="1" |
| | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› | | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
Line 40: |
Line 98: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 83: |
Line 142: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 124: |
Line 184: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
Line 176: |
Line 237: |
| |} | | |} |
| |} | | |} |
| + | |
| <br> | | <br> |