The ''negation'' of <math>x,\!</math> for <math>x \in \underline\mathbb{B},</math> written <math>^{\backprime\backprime} \underline{(} x \underline{)} ^{\prime\prime}</math> and read <math>^{\backprime\backprime} \operatorname{not}\ x ^{\prime\prime},</math> is the boolean value <math>\underline{(} x \underline{)} \in \underline\mathbb{B}</math> that is <math>\underline{1}</math> when <math>x\!</math> is <math>\underline{0},</math> and <math>\underline{0}</math> when <math>x\!</math> is <math>\underline{1}.</math> In other words, negation is a monadic operation on boolean values, or a function of the form <math>\underline{(} \cdot \underline{)} : \underline\mathbb{B} \to \underline\mathbb{B}.</math> | The ''negation'' of <math>x,\!</math> for <math>x \in \underline\mathbb{B},</math> written <math>^{\backprime\backprime} \underline{(} x \underline{)} ^{\prime\prime}</math> and read <math>^{\backprime\backprime} \operatorname{not}\ x ^{\prime\prime},</math> is the boolean value <math>\underline{(} x \underline{)} \in \underline\mathbb{B}</math> that is <math>\underline{1}</math> when <math>x\!</math> is <math>\underline{0},</math> and <math>\underline{0}</math> when <math>x\!</math> is <math>\underline{1}.</math> In other words, negation is a monadic operation on boolean values, or a function of the form <math>\underline{(} \cdot \underline{)} : \underline\mathbb{B} \to \underline\mathbb{B}.</math> |