Line 590: |
Line 590: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
− | | <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle,</math> | + | | <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f),</math> |
| |- | | |- |
− | | <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle.</math> | + | | <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i).</math> |
| |} | | |} |
| | | |
Line 598: |
Line 598: |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 13. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' | + | |+ '''Table 13. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |
Line 944: |
Line 944: |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 14. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' | + | |+ '''Table 14. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |