| Line 40: | Line 40: | 
|  | Table 1 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion:  Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head.  Column 3 displays one of the more usual expressions for the proposition in question.  The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> |  | Table 1 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion:  Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head.  Column 3 displays one of the more usual expressions for the proposition in question.  The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> | 
|  |  |  |  | 
| − | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" | 
|  | |+ '''Table 1.  Higher Order Propositions (''n'' = 1)''' |  | |+ '''Table 1.  Higher Order Propositions (''n'' = 1)''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
| − | | align="right" | <math>x</math>: | + | | align="right" | <math>x:</math> | 
|  | | 1 0 |  | | 1 0 | 
| − | | <math>f</math> | + | | <math>f\!</math> | 
|  | | <math>m_0</math> |  | | <math>m_0</math> | 
|  | | <math>m_1</math> |  | | <math>m_1</math> | 
| Line 66: | Line 66: | 
|  | | 0 0 |  | | 0 0 | 
|  | | <math>0\!</math> |  | | <math>0\!</math> | 
| − | | 0 || 1 || 0 || 1 ||0 || 1 ||0 || 1 ||0 || 1 ||0 || 1 ||0 || 1 ||0 || 1 | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
|  | | <math>f_1</math> |  | | <math>f_1</math> | 
|  | | 0 1 |  | | 0 1 | 
|  | | <math>(x)\!</math> |  | | <math>(x)\!</math> | 
| − | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1|| 0 || 0 || 1 || 1|| 0 || 0 || 1 || 1 | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
|  | | <math>f_2</math> |  | | <math>f_2</math> | 
|  | | 1 0 |  | | 1 0 | 
|  | | <math>x\!</math> |  | | <math>x\!</math> | 
| − | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | + | | 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
|  | | <math>f_3</math> |  | | <math>f_3</math> | 
|  | | 1 1 |  | | 1 1 | 
|  | | <math>1\!</math> |  | | <math>1\!</math> | 
| − | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  |