The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form:
+
The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as its argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and every other proposition a value of 0. Expressed in symbolic form:
{| align="center" cellpadding="8"
{| align="center" cellpadding="8"
Line 435:
Line 435:
|}
|}
−
The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0. Expressed in symbolic form:
+
The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs of propositions in which the first implies the second a value of 1 and every other pair a value of 0. Expressed in symbolic form: