Line 805: |
Line 805: |
| |+ '''Table 9. Relation of Quantifiers to Higher Order Propositions''' | | |+ '''Table 9. Relation of Quantifiers to Higher Order Propositions''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | Mnemonic | + | | <math>\text{Mnemonic}</math> |
− | | Category | + | | <math>\text{Category}</math> |
− | | Classical Form | + | | <math>\text{Classical Form}</math> |
− | | Alternate Form | + | | <math>\text{Alternate Form}</math> |
− | | Symmetric Form | + | | <math>\text{Symmetric Form}</math> |
− | | Operator | + | | <math>\text{Operator}</math> |
| |- | | |- |
− | | <math>\text{E}\!</math><br>Exclusive | + | | <math>\text{E}\!</math><br><math>\text{Exclusive}</math> |
− | | Universal<br>Negative | + | | <math>\text{Universal}</math><br><math>\text{Negative}</math> |
| | <math>\text{All}\ x\ \text{is}\ (y)</math> | | | <math>\text{All}\ x\ \text{is}\ (y)</math> |
| | | | | |
Line 819: |
Line 819: |
| | <math>(\ell_{11})</math> | | | <math>(\ell_{11})</math> |
| |- | | |- |
− | | <math>\text{A}\!</math><br>Absolute | + | | <math>\text{A}\!</math><br><math>\text{Absolute}</math> |
− | | Universal<br>Affirmative | + | | <math>\text{Universal}</math><br><math>\text{Affirmative}</math> |
| | <math>\text{All}\ x\ \text{is}\ y </math> | | | <math>\text{All}\ x\ \text{is}\ y </math> |
| | | | | |
Line 854: |
Line 854: |
| | <math>\ell_{01}\!</math> | | | <math>\ell_{01}\!</math> |
| |- | | |- |
− | | <math>\text{O}\!</math><br>Obtrusive | + | | <math>\text{O}\!</math><br><math>\text{Obtrusive}</math> |
− | | Particular<br>Negative | + | | <math>\text{Particular}</math><br><math>\text{Negative}</math> |
| | <math>\text{Some}\ x\ \text{is}\ (y)</math> | | | <math>\text{Some}\ x\ \text{is}\ (y)</math> |
| | | | | |
Line 861: |
Line 861: |
| | <math>\ell_{10}\!</math> | | | <math>\ell_{10}\!</math> |
| |- | | |- |
− | | <math>\text{I}\!</math><br>Indefinite | + | | <math>\text{I}\!</math><br><math>\text{Indefinite}</math> |
− | | Particular<br>Affirmative | + | | <math>\text{Particular}</math><br><math>\text{Affirmative}</math> |
| | <math>\text{Some}\ x\ \text{is}\ y</math> | | | <math>\text{Some}\ x\ \text{is}\ y</math> |
| | | | | |