| Line 487: | 
Line 487: | 
|   |  |   |  | 
|   | {| cellpadding="4"  |   | {| cellpadding="4"  | 
| − | | width="36" |   || ''L''<sub>10</sub> ''f''  | + | | width="36" |   || <math>L_{10} f\!</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || ''L''<sub>" x (y)"</sub> ''f''  | + | |   || = || <math>L_{x\ (\!| y |\!)} f</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || α<sub>4</sub> ''f''  | + | |   || = || <math>\alpha_4 f\!</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || Υ<sub>"x (y)"</sub> ''f''  | + | |   || = || <math>\Upsilon_{x\ (\!| y |\!)} f</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || Υ<sub>"x (y) ⇒ f"</sub>  | + | |   || = || <math>\Upsilon_{x\ (\!| y |\!)\ \Rightarrow\ f}</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || "f likes  x (y)"  | + | |   || = || <math>f\ \operatorname{likes}\ x\ (\!| y |\!)</math>  | 
|   | |}  |   | |}  | 
|   |  |   |  | 
|   | {| cellpadding="4"  |   | {| cellpadding="4"  | 
| − | | width="36" |   || ''L''<sub>11</sub> ''f''  | + | | width="36" |   || <math>L_{11} f\!</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || ''L''<sub>" x y"</sub> ''f''  | + | |   || = || <math>L_{x\ y} f</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || α<sub>8</sub> ''f''  | + | |   || = || <math>\alpha_8 f\!</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || Υ<sub>"x y"</sub> ''f''  | + | |   || = || <math>\Upsilon_{x\ y} f</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || Υ<sub>"x y ⇒ f"</sub>  | + | |   || = || <math>\Upsilon_{x\ y\ \Rightarrow\ f}</math>  | 
|   | |-  |   | |-  | 
| − | |   || = || "f likes x y"  | + | |   || = || <math>f\ \operatorname{likes}\ x\ y</math>  | 
|   | |}  |   | |}  | 
|   |  |   |  |