Line 306: |
Line 306: |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| </pre> | | </pre> |
− | | + | |
| <pre> | | <pre> |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
Line 325: |
Line 325: |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| </pre> | | </pre> |
− | | + | |
| <pre> | | <pre> |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
Line 357: |
Line 357: |
| Here is a proof sketch for the ''Case Analysis-Synthesis Theorem'' (CAST): | | Here is a proof sketch for the ''Case Analysis-Synthesis Theorem'' (CAST): |
| | | |
− | o-----------------------------------------------------------o
| + | <pre> |
− | | Case Analysis-Synthesis Theorem.` Proof Sketch. ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | o-----------------------------------------------------------o
| + | | Case Analysis-Synthesis Theorem.` Proof Sketch. ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | | ` ` ` ` ` ` `Q` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `Q` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o=============================< L1. Split " " >=============o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o=============================< L1. Split " " >=============o |
− | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `o---o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `o---o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `Q @` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `Q @` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o=============================< L3. Disperse "Q" >==========o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o=============================< L3. Disperse "Q" >==========o |
− | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` `Q o---o Q` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` `Q o---o Q` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o=============================< C1. Reflect "x" >===========o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o=============================< C1. Reflect "x" >===========o |
− | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` `Q o---o Q[((x))/x] ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `x` `|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` `Q o---o Q[((x))/x] ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o=============================< C2. Weed "x", "(x)" >=======o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o=============================< C2. Weed "x", "(x)" >=======o |
− | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `x` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `x ` |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` Q[o/x] o---o Q[|/x] ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `x ` |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` Q[o/x] o---o Q[|/x] ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o=============================< QES >=======================o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
| + | o=============================< QES >=======================o |
| + | </pre> |
| | | |
| NB. QES = "Quod Erat Sketchiendum". | | NB. QES = "Quod Erat Sketchiendum". |
Line 406: |
Line 408: |
| Some of the jobs that the CAST can be usefully put to work on are proving propositional theorems and establishing equations between propositions. Once again, let us turn to the example of Leibniz's ''Praeclarum Theorema'' as a way of illustrating how. | | Some of the jobs that the CAST can be usefully put to work on are proving propositional theorems and establishing equations between propositions. Once again, let us turn to the example of Leibniz's ''Praeclarum Theorema'' as a way of illustrating how. |
| | | |
− | o-----------------------------------------------------------o
| + | <pre> |
− | | Praeclarum Theorema.` Proof by CAST.` ` ` ` ` ` ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | o-----------------------------------------------------------o
| + | | Praeclarum Theorema.` Proof by CAST.` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | | ` ` b o ` o c ` ` o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` | ` | ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` b o ` o c ` ` o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` a o ` o d ` ` o ad` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` | ` | ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` `\ /` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` a o ` o d ` ` o ad` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` `\ /` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
| + | | ` ` ` ` o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
| + | | ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
| + | | ` ` |
| | | |
| What we have harvested is the succulent equivalent of a ''disjunctive normal form'' (DNF) for the proposition with which we started. Remembering that a blank node is the graphical equivalent of a logical value ''true'', we can read this brand of DNF in the following manner: | | What we have harvested is the succulent equivalent of a ''disjunctive normal form'' (DNF) for the proposition with which we started. Remembering that a blank node is the graphical equivalent of a logical value ''true'', we can read this brand of DNF in the following manner: |
| | | |
− | o-----------------------------------------------------------o
| + | <pre> |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | | ` ` ` ` ` ` `c o---o---o c` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` `c o---o---o c` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` `b o---o---o b` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` `b o---o---o b` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` `d o---o---o d` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` `d o---o---o d` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` `a o---o---o a` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` `a o---o---o a` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | o-----------------------------------------------------------o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | o-----------------------------------------------------------o |
− | | Either not 'a' and thus 'true'` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` Or ` ` 'a' and thus ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | Either not 'a' and thus 'true'` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` `Either not 'd' and thus 'true' ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` Or ` ` 'a' and thus ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` `Or ` ` 'd' and thus` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` `Either not 'd' and thus 'true' ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` Either not 'b' and thus 'true'` ` ` ` ` ` ` |
| + | | ` ` ` ` ` `Or ` ` 'd' and thus` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` Or ` ` 'b' and thus ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` Either not 'b' and thus 'true'` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` `Either not 'c' and thus 'true' ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` Or ` ` 'b' and thus ` ` ` ` ` ` ` ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` `Or ` ` 'c' and thus true.` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` `Either not 'c' and thus 'true' ` ` ` | |
− | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
| + | | ` ` ` ` ` ` ` ` ` ` ` ` `Or ` ` 'c' and thus true.` ` ` ` | |
− | o-----------------------------------------------------------o
| + | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | |
| + | o-----------------------------------------------------------o |
| + | </pre> |
| | | |
| That is tantamount to saying that the proposition being submitted for analysis is true in each case. Ergo we are justly entitled to title it a ''Theorem''. | | That is tantamount to saying that the proposition being submitted for analysis is true in each case. Ergo we are justly entitled to title it a ''Theorem''. |