Line 738: |
Line 738: |
| Propositional forms on one variable correspond to boolean functions <math>f : \mathbb{B}^1 \to \mathbb{B}.</math> In Table 6 these functions are listed in a variant form of [[truth table]], one in which the axes of the usual arrangement are rotated through a right angle. Each function <math>f_i\!</math> is indexed by the string of values that it takes on the points of the universe <math>X^\circ = [x] \cong \mathbb{B}^1.</math> The binary index generated in this way is converted to its decimal equivalent and these are used as conventional names for the <math>f_i,\!</math> as shown in the first column of the Table. In their own right the <math>2^1\!</math> points of the universe <math>X^\circ</math> are coordinated as a space of type <math>\mathbb{B}^1,</math> this in light of the universe <math>X^\circ</math> being a functional domain where the coordinate projection <math>x\!</math> takes on its values in <math>\mathbb{B}.</math> | | Propositional forms on one variable correspond to boolean functions <math>f : \mathbb{B}^1 \to \mathbb{B}.</math> In Table 6 these functions are listed in a variant form of [[truth table]], one in which the axes of the usual arrangement are rotated through a right angle. Each function <math>f_i\!</math> is indexed by the string of values that it takes on the points of the universe <math>X^\circ = [x] \cong \mathbb{B}^1.</math> The binary index generated in this way is converted to its decimal equivalent and these are used as conventional names for the <math>f_i,\!</math> as shown in the first column of the Table. In their own right the <math>2^1\!</math> points of the universe <math>X^\circ</math> are coordinated as a space of type <math>\mathbb{B}^1,</math> this in light of the universe <math>X^\circ</math> being a functional domain where the coordinate projection <math>x\!</math> takes on its values in <math>\mathbb{B}.</math> |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 6. Propositional Forms on One Variable''' | | |+ '''Table 6. Propositional Forms on One Variable''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | ! style="width:16%" | L<sub>1</sub><br>Decimal
| + | | style="width:16%" | |
− | ! style="width:16%" | L<sub>2</sub><br>Binary
| + | <math>\begin{matrix}\mathcal{L}_1 \\ \mbox{Decimal}\end{matrix}</math> |
− | ! style="width:16%" | L<sub>3</sub><br>Vector
| + | | style="width:16%" | |
− | ! style="width:16%" | L<sub>4</sub><br>Cactus
| + | <math>\begin{matrix}\mathcal{L}_2 \\ \mbox{Binary}\end{matrix}</math> |
− | ! style="width:16%" | L<sub>5</sub><br>English
| + | | style="width:16%" | |
− | ! style="width:16%" | L<sub>6</sub><br>Ordinary
| + | <math>\begin{matrix}\mathcal{L}_3 \\ \mbox{Vector}\end{matrix}</math> |
| + | | style="width:16%" | |
| + | <math>\begin{matrix}\mathcal{L}_4 \\ \mbox{Cactus}\end{matrix}</math> |
| + | | style="width:16%" | |
| + | <math>\begin{matrix}\mathcal{L}_5 \\ \mbox{English}\end{matrix}</math> |
| + | | style="width:16%" | |
| + | <math>\begin{matrix}\mathcal{L}_6 \\ \mbox{Ordinary}\end{matrix}</math> |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | | + | | <math>~</math> |
− | | align="right" | x : | + | | align="right" | <math>x :\!</math> |
− | | 1 0 | + | | <math>1~0</math> |
− | | | + | | <math>~</math> |
− | | | + | | <math>~</math> |
− | | | + | | <math>~</math> |
| |- | | |- |
− | | f<sub>0</sub> | + | | <math>f_0\!</math> |
− | | f<sub>00</sub> | + | | <math>f_{00}\!</math> |
− | | 0 0 | + | | <math>0~0</math> |
− | | ( ) | + | | <math>(~)\!</math> |
− | | false | + | | <math>\mbox{false}\!</math> |
− | | 0 | + | | <math>0\!</math> |
| |- | | |- |
− | | f<sub>1</sub> | + | | <math>f_1\!</math> |
− | | f<sub>01</sub> | + | | <math>f_{01}\!</math> |
− | | 0 1 | + | | <math>0~1</math> |
− | | (x) | + | | <math>(x)\!</math> |
− | | not x | + | | <math>\mbox{not}\ x</math> |
− | | ~x | + | | <math>\lnot x</math> |
| |- | | |- |
− | | f<sub>2</sub> | + | | <math>f_2\!</math> |
− | | f<sub>10</sub> | + | | <math>f_{10}\!</math> |
− | | 1 0 | + | | <math>1~0</math> |
− | | x | + | | <math>x\!</math> |
− | | x | + | | <math>x\!</math> |
− | | x | + | | <math>x\!</math> |
| |- | | |- |
− | | f<sub>3</sub> | + | | <math>f_3\!</math> |
− | | f<sub>11</sub> | + | | <math>f_{11}\!</math> |
− | | 1 1 | + | | <math>1~1</math> |
− | | (( )) | + | | <math>((~))\!</math> |
− | | true | + | | <math>\mbox{true}\!</math> |
− | | 1 | + | | <math>1\!</math> |
| |}<br> | | |}<br> |
| | | |