Line 3,368: |
Line 3,368: |
| <font face="courier new"> | | <font face="courier new"> |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" |
− | |+ '''Table 15. Tacit Extension of [''A''] to [''A'', d''A'']''' | + | |+ '''Table 15. Tacit Extension of <math>[A]\!</math> to <math>[A, \operatorname{d}A]</math>''' |
| | | | | |
| {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" |
| | | | | |
− | | 0 | + | | <math>0\!</math> |
− | | = | + | | <math>=\!</math> |
− | | 0 | + | | <math>0\!</math> |
− | | · | + | | <math>\cdot\!</math> |
− | | ((d''A''), d''A'') | + | | <math>((\operatorname{d}A),\ \operatorname{d}A)\!</math> |
− | | = | + | | <math>=\!</math> |
− | | 0 | + | | <math>0\!</math> |
| | | | | |
| |- | | |- |
| | | | | |
− | | (''A'') | + | | <math>(A)\!</math> |
− | | = | + | | <math>=\!</math> |
− | | (''A'') | + | | <math>(A)\!</math> |
− | | · | + | | <math>\cdot\!</math> |
− | | ((d''A''), d''A'') | + | | <math>((\operatorname{d}A),\ \operatorname{d}A)\!</math> |
− | | = | + | | <math>=\!</math> |
− | | (''A'')(d''A'') + (''A'') d''A'' | + | | <math>(A)(\operatorname{d}A)\ +\ (A)\ \operatorname{d}A\!</math> |
| | | | | |
| |- | | |- |
| | | | | |
− | | ''A'' | + | | <math>A\!</math> |
− | | = | + | | <math>=\!</math> |
− | | ''A'' | + | | <math>A\!</math> |
− | | · | + | | <math>\cdot\!</math> |
− | | ((d''A''), d''A'') | + | | <math>((\operatorname{d}A),\ \operatorname{d}A)\!</math> |
− | | = | + | | <math>=\!</math> |
− | | ''A'' (d''A'') + ''A'' d''A'' | + | | <math>A\ (\operatorname{d}A)\ +\ A\ \operatorname{d}A\!</math> |
| | | | | |
| |- | | |- |
| | | | | |
− | | 1 | + | | <math>1\!</math> |
− | | = | + | | <math>=\!</math> |
− | | 1 | + | | <math>1\!</math> |
− | | · | + | | <math>\cdot\!</math> |
− | | ((d''A''), d''A'') | + | | <math>((\operatorname{d}A),\ \operatorname{d}A)\!</math> |
− | | = | + | | <math>=\!</math> |
− | | 1 | + | | <math>1\!</math> |
| |} | | |} |
| |} | | |} |
| </font><br> | | </font><br> |
| | | |
− | In its effect on the singular propositions over ''X'', this analysis has an interesting interpretation. The tacit extension takes us from thinking about a particular state, like ''A'' or (''A''), to considering the collection of outcomes, the outgoing changes or the singular dispositions, that spring from that state. | + | In its effect on the singular propositions over <math>X,\!</math> this analysis has an interesting interpretation. The tacit extension takes us from thinking about a particular state, like <math>A\!</math> or <math>(A),\!</math> to considering the collection of outcomes, the outgoing changes or the singular dispositions, that spring from that state. |
| | | |
| ===Example 2. Drives and Their Vicissitudes=== | | ===Example 2. Drives and Their Vicissitudes=== |