Changes

Line 3,364: Line 3,364:  
On formal occasions, such as the present context of definition, the tacit extension from <math>\mathcal{X}</math> to <math>\mathcal{Y}</math> is explicitly symbolized by the operator <math>\epsilon : (\langle \mathcal{X} \rangle \to \mathbb{B}) \to (\langle \mathcal{Y} \rangle \to \mathbb{B}),</math> where the appropriate alphabets <math>\mathcal{X}</math> and <math>\mathcal{Y}</math> are understood from context, but normally one may leave the "<math>\epsilon\!</math>" silent.
 
On formal occasions, such as the present context of definition, the tacit extension from <math>\mathcal{X}</math> to <math>\mathcal{Y}</math> is explicitly symbolized by the operator <math>\epsilon : (\langle \mathcal{X} \rangle \to \mathbb{B}) \to (\langle \mathcal{Y} \rangle \to \mathbb{B}),</math> where the appropriate alphabets <math>\mathcal{X}</math> and <math>\mathcal{Y}</math> are understood from context, but normally one may leave the "<math>\epsilon\!</math>" silent.
   −
Let's explore what this means for the present Example.  Here, <math>\mathcal{X} = \{ A \}</math> and <math>\mathcal{Y} = \operatorname{E}\mathcal{X} = \{ A, \operatorname{d}A \}.</math>  For each of the propositions <math>f_i\!</math> over <math>X\!,</math> specifically, those whose expression <math>e_i\!</math> lies in the collection <math>\{ 0, (A), A, 1 \},</math> the tacit extension <math>\epsilon f\!</math> of <math>f\!</math> to <math>\operatorname{E}X</math> can be phrased as a logical conjunction of two factors, <math>f_i = e_i \cdot \tau\ ,</math> where <math>\tau\!</math> is a logical tautology that uses all the variables of <math>\mathcal{Y} - \mathcal{X}.</math>  Working in these terms, the tacit extensions <math>\epsilon f\!</math> of <math>f\!</math> to <math>\operatorname{E}X</math> may be explicated as shown in Table&nbsp;15.
+
Let's explore what this means for the present Example.  Here, <math>\mathcal{X} = \{ A \}</math> and <math>\mathcal{Y} = \operatorname{E}\mathcal{X} = \{ A, \operatorname{d}A \}.</math>  For each of the propositions <math>f_i\!</math> over <math>X\!,</math> specifically, those whose expression <math>e_i\!</math> lies in the collection <math>\{ 0, (A), A, 1 \},\!</math> the tacit extension <math>\epsilon f\!</math> of <math>f\!</math> to <math>\operatorname{E}X</math> can be phrased as a logical conjunction of two factors, <math>f_i = e_i \cdot \tau\ ,</math> where <math>\tau\!</math> is a logical tautology that uses all the variables of <math>\mathcal{Y} - \mathcal{X}.</math>  Working in these terms, the tacit extensions <math>\epsilon f\!</math> of <math>f\!</math> to <math>\operatorname{E}X</math> may be explicated as shown in Table&nbsp;15.
    
<font face="courier new">
 
<font face="courier new">
12,080

edits