Changes

Line 1,051: Line 1,051:     
<pre>
 
<pre>
 +
\PMlinkescapephrase{action}
 +
\PMlinkescapephrase{Action}
 +
\PMlinkescapephrase{actions}
 +
\PMlinkescapephrase{Actions}
 
\PMlinkescapephrase{algebraic}
 
\PMlinkescapephrase{algebraic}
 
\PMlinkescapephrase{Algebraic}
 
\PMlinkescapephrase{Algebraic}
Line 1,057: Line 1,061:  
\PMlinkescapephrase{expanded}
 
\PMlinkescapephrase{expanded}
 
\PMlinkescapephrase{expanded}
 
\PMlinkescapephrase{expanded}
 +
\PMlinkescapephrase{expanded}
 +
\PMlinkescapephrase{expanded}
 +
 +
The actions of the \PMlinkname{difference operator}{FiniteDifference} $\operatorname{D}$ and the \PMlinkname{tangent operator}{TangentMap} $\operatorname{d}$ on each of the 16 propositional forms on two variables are shown in the Tables below.
 +
 +
Table A7 expands the resulting differential forms over a so-called ``logical basis":
 +
 +
\begin{center}
 +
$\{ (\operatorname{d}x)(\operatorname{d}y),\ \operatorname{d}x\,(\operatorname{d}y),\ (\operatorname{d}x)\,\operatorname{d}y,\ \operatorname{d}x\,\operatorname{d}y \}.$
 +
\end{center}
 +
 +
This is a set of singular propositions indicating mutually exclusive and exhaustive ``cells" or coordinate points of the universe of discourse.  For this reason, it may also be referred to as a cell-basis, point-basis, or singular basis.  In this setting it is frequently convenient to use the following abbreviations:
 +
 +
\begin{center}
 +
$\partial x = \operatorname{d}x\,(\operatorname{d}y)$ and $\partial y = (\operatorname{d}x)\,\operatorname{d}y.$
 +
\end{center}
 +
 +
Table A8 expands the resulting differential forms over a so-called ``algebraic basis":
 +
 +
\begin{center}
 +
$\{ 1,\ \operatorname{d}x,\ \operatorname{d}y,\ \operatorname{d}x\,\operatorname{d}y \}.$
 +
\end{center}
    
\tableofcontents
 
\tableofcontents
   −
\subsection{Differential Forms Expanded on a Logical Basis}
+
\subsection{Table A7.  Differential Forms Expanded on a Logical Basis}
    
\begin{center}\begin{tabular}{|c|c|c|c|}
 
\begin{center}\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\textbf{Differential Forms Expanded on a Logical Basis}} \\
+
\multicolumn{4}{c}{\textbf{Table A7.  Differential Forms Expanded on a Logical Basis}} \\
 
\hline
 
\hline
 
&
 
&
Line 1,220: Line 1,246:  
\end{tabular}\end{center}
 
\end{tabular}\end{center}
   −
\subsection{Differential Forms Expanded on an Algebraic Basis}
+
\subsection{Table A8.  Differential Forms Expanded on an Algebraic Basis}
    
\begin{center}\begin{tabular}{|c|c|c|c|}
 
\begin{center}\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\textbf{Differential Forms Expanded on an Algebraic Basis}} \\
+
\multicolumn{4}{c}{\textbf{Table A8.  Differential Forms Expanded on an Algebraic Basis}} \\
 
\hline
 
\hline
 
&
 
&
12,080

edits