| Line 1,533: |
Line 1,533: |
| | \hline | | \hline |
| | $f_{15}$ & $0$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ | | $f_{15}$ & $0$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ |
| | + | \hline |
| | + | \end{tabular}\end{center} |
| | + | |
| | + | \subsection{Partial Differentials and Relative Differentials} |
| | + | |
| | + | \begin{center}\begin{tabular}{|c|c|c|c|c|c|c|} |
| | + | \multicolumn{7}{c}{\textbf{Partial Differentials and Relative Differentials}} \\ |
| | + | \hline |
| | + | & |
| | + | $f$ |
| | + | & |
| | + | $\frac{\partial f}{\partial x}$ |
| | + | & |
| | + | $\frac{\partial f}{\partial y}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | \operatorname{d}f = \\ |
| | + | \partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\frac{\partial x}{\partial y} \big| f$ |
| | + | & |
| | + | $\frac{\partial y}{\partial x} \big| f$ \\ |
| | + | \hline |
| | + | $f_0$ & $(~)$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ |
| | + | \hline |
| | + | $\begin{matrix} |
| | + | f_{1} \\ |
| | + | f_{2} \\ |
| | + | f_{4} \\ |
| | + | f_{8} \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (x)(y) \\ |
| | + | (x)~y \\ |
| | + | x~(y) \\ |
| | + | x~~y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (y) \\ |
| | + | y \\ |
| | + | (y) \\ |
| | + | y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (x) \\ |
| | + | (x) \\ |
| | + | x \\ |
| | + | x \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| | + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| | + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| | + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ \\ |
| | + | \hline |
| | + | $\begin{matrix} |
| | + | f_{3} \\ |
| | + | f_{12} \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (x) \\ |
| | + | x \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 1 \\ |
| | + | 1 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 0 \\ |
| | + | 0 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | \operatorname{d}x \\ |
| | + | \operatorname{d}x \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ \\ |
| | + | \hline |
| | + | $\begin{matrix} |
| | + | f_{6} \\ |
| | + | f_{9} \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (x,~y) \\ |
| | + | ((x,~y)) \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 1 \\ |
| | + | 1 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 1 \\ |
| | + | 1 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | \operatorname{d}x + \operatorname{d}y \\ |
| | + | \operatorname{d}x + \operatorname{d}y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ \\ |
| | + | \hline |
| | + | $\begin{matrix} |
| | + | f_{5} \\ |
| | + | f_{10} \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (y) \\ |
| | + | y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 0 \\ |
| | + | 0 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | 1 \\ |
| | + | 1 \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | \operatorname{d}y \\ |
| | + | \operatorname{d}y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ \\ |
| | + | \hline |
| | + | $\begin{matrix} |
| | + | f_{7} \\ |
| | + | f_{11} \\ |
| | + | f_{13} \\ |
| | + | f_{14} \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | (x~~y) \\ |
| | + | (x~(y)) \\ |
| | + | ((x)~y) \\ |
| | + | ((x)(y)) \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | y \\ |
| | + | (y) \\ |
| | + | y \\ |
| | + | (y) \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | x \\ |
| | + | x \\ |
| | + | (x) \\ |
| | + | (x) \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| | + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| | + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| | + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ |
| | + | & |
| | + | $\begin{matrix} |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | ~ \\ |
| | + | \end{matrix}$ \\ |
| | + | \hline |
| | + | $f_{15}$ & $((~))$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ |
| | \hline | | \hline |
| | \end{tabular}\end{center} | | \end{tabular}\end{center} |