Line 2,724: |
Line 2,724: |
| By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. | | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| | | |
− | ===Variant 1=== | + | ===Table 1=== |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 2,864: |
Line 2,864: |
| <br> | | <br> |
| | | |
− | ===Variant 2=== | + | ===Table 2 : Variant 1=== |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 2,900: |
Line 2,900: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{1}\!</math></p><br> | + | <p><math>f_{1}\!</math></p> |
− | <p><math>f_{2}\!</math></p><br> | + | <p><math>f_{2}\!</math></p> |
− | <p><math>f_{4}\!</math></p><br> | + | <p><math>f_{4}\!</math></p> |
| <p><math>f_{8}\!</math></p> | | <p><math>f_{8}\!</math></p> |
| |} | | |} |
Line 2,908: |
Line 2,908: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0001}\!</math></p><br> | + | <p><math>f_{0001}\!</math></p> |
− | <p><math>f_{0010}\!</math></p><br> | + | <p><math>f_{0010}\!</math></p> |
− | <p><math>f_{0100}\!</math></p><br> | + | <p><math>f_{0100}\!</math></p> |
| <p><math>f_{1000}\!</math></p> | | <p><math>f_{1000}\!</math></p> |
| |} | | |} |
Line 2,916: |
Line 2,916: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 0 0 1</p><br> | + | <p>0 0 0 1</p> |
− | <p>0 0 1 0</p><br> | + | <p>0 0 1 0</p> |
− | <p>0 1 0 0</p><br> | + | <p>0 1 0 0</p> |
| <p>1 0 0 0</p> | | <p>1 0 0 0</p> |
| |} | | |} |
Line 2,924: |
Line 2,924: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x)(y)\!</math></p><br> | + | <p><math>(x)(y)\!</math></p> |
− | <p><math>(x)\ y\!</math></p><br> | + | <p><math>(x)\ y\!</math></p> |
− | <p><math>x\ (y)\!</math></p><br> | + | <p><math>x\ (y)\!</math></p> |
| <p><math>x\ y\!</math></p> | | <p><math>x\ y\!</math></p> |
| |} | | |} |
Line 2,932: |
Line 2,932: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p><br> | + | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> |
− | <p><math>y\ \operatorname{without}\ x</math></p><br> | + | <p><math>y\ \operatorname{without}\ x</math></p> |
− | <p><math>x\ \operatorname{without}\ y</math></p><br> | + | <p><math>x\ \operatorname{without}\ y</math></p> |
| <p><math>x\ \operatorname{and}\ y</math></p> | | <p><math>x\ \operatorname{and}\ y</math></p> |
| |} | | |} |
Line 2,940: |
Line 2,940: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x \land \lnot y</math></p><br> | + | <p><math>\lnot x \land \lnot y</math></p> |
− | <p><math>\lnot x \land y</math></p><br> | + | <p><math>\lnot x \land y</math></p> |
− | <p><math>x \land \lnot y</math></p><br> | + | <p><math>x \land \lnot y</math></p> |
| <p><math>x \land y</math></p> | | <p><math>x \land y</math></p> |
| |} | | |} |
Line 2,949: |
Line 2,949: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{3}\!</math></p><br> | + | <p><math>f_{3}\!</math></p> |
| <p><math>f_{12}\!</math></p> | | <p><math>f_{12}\!</math></p> |
| |} | | |} |
Line 2,955: |
Line 2,955: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0011}\!</math></p><br> | + | <p><math>f_{0011}\!</math></p> |
| <p><math>f_{1100}\!</math></p> | | <p><math>f_{1100}\!</math></p> |
| |} | | |} |
Line 2,961: |
Line 2,961: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 0 1 1</p><br> | + | <p>0 0 1 1</p> |
| <p>1 1 0 0</p> | | <p>1 1 0 0</p> |
| |} | | |} |
Line 2,967: |
Line 2,967: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x)\!</math></p><br> | + | <p><math>(x)\!</math></p> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 2,973: |
Line 2,973: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not}\ x</math></p><br> | + | <p><math>\operatorname{not}\ x</math></p> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 2,979: |
Line 2,979: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x</math></p><br> | + | <p><math>\lnot x</math></p> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 2,986: |
Line 2,986: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{6}\!</math></p><br> | + | <p><math>f_{6}\!</math></p> |
| <p><math>f_{9}\!</math></p> | | <p><math>f_{9}\!</math></p> |
| |} | | |} |
Line 2,992: |
Line 2,992: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0110}\!</math></p><br> | + | <p><math>f_{0110}\!</math></p> |
| <p><math>f_{1001}\!</math></p> | | <p><math>f_{1001}\!</math></p> |
| |} | | |} |
Line 2,998: |
Line 2,998: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 1 0</p><br> | + | <p>0 1 1 0</p> |
| <p>1 0 0 1</p> | | <p>1 0 0 1</p> |
| |} | | |} |
Line 3,004: |
Line 3,004: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x,\ y)\!</math></p><br> | + | <p><math>(x,\ y)\!</math></p> |
| <p><math>((x,\ y))\!</math></p> | | <p><math>((x,\ y))\!</math></p> |
| |} | | |} |
Line 3,010: |
Line 3,010: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>x\ \operatorname{not~equal~to}\ y</math></p><br> | + | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> |
| <p><math>x\ \operatorname{equal~to}\ y</math></p> | | <p><math>x\ \operatorname{equal~to}\ y</math></p> |
| |} | | |} |
Line 3,016: |
Line 3,016: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>x \ne y</math></p><br> | + | <p><math>x \ne y</math></p> |
| <p><math>x = y\!</math></p> | | <p><math>x = y\!</math></p> |
| |} | | |} |
Line 3,023: |
Line 3,023: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{5}\!</math></p><br> | + | <p><math>f_{5}\!</math></p> |
| <p><math>f_{10}\!</math></p> | | <p><math>f_{10}\!</math></p> |
| |} | | |} |
Line 3,029: |
Line 3,029: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0101}\!</math></p><br> | + | <p><math>f_{0101}\!</math></p> |
| <p><math>f_{1010}\!</math></p> | | <p><math>f_{1010}\!</math></p> |
| |} | | |} |
Line 3,035: |
Line 3,035: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 0 1</p><br> | + | <p>0 1 0 1</p> |
| <p>1 0 1 0</p> | | <p>1 0 1 0</p> |
| |} | | |} |
Line 3,041: |
Line 3,041: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(y)\!</math></p><br> | + | <p><math>(y)\!</math></p> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,047: |
Line 3,047: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not}\ y</math></p><br> | + | <p><math>\operatorname{not}\ y</math></p> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,053: |
Line 3,053: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot y</math></p><br> | + | <p><math>\lnot y</math></p> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,060: |
Line 3,060: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{7}\!</math></p><br> | + | <p><math>f_{7}\!</math></p> |
− | <p><math>f_{11}\!</math></p><br> | + | <p><math>f_{11}\!</math></p> |
− | <p><math>f_{13}\!</math></p><br> | + | <p><math>f_{13}\!</math></p> |
| <p><math>f_{14}\!</math></p> | | <p><math>f_{14}\!</math></p> |
| |} | | |} |
Line 3,068: |
Line 3,068: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0111}\!</math></p><br> | + | <p><math>f_{0111}\!</math></p> |
− | <p><math>f_{1011}\!</math></p><br> | + | <p><math>f_{1011}\!</math></p> |
− | <p><math>f_{1101}\!</math></p><br> | + | <p><math>f_{1101}\!</math></p> |
| <p><math>f_{1110}\!</math></p> | | <p><math>f_{1110}\!</math></p> |
| |} | | |} |
Line 3,076: |
Line 3,076: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 1 1</p><br> | + | <p>0 1 1 1</p> |
− | <p>1 0 1 1</p><br> | + | <p>1 0 1 1</p> |
− | <p>1 1 0 1</p><br> | + | <p>1 1 0 1</p> |
| <p>1 1 1 0</p> | | <p>1 1 1 0</p> |
| |} | | |} |
Line 3,084: |
Line 3,084: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x\ y)\!</math></p><br> | + | <p><math>(x\ y)\!</math></p> |
− | <p><math>(x\ (y))\!</math></p><br> | + | <p><math>(x\ (y))\!</math></p> |
− | <p><math>((x)\ y)\!</math></p><br> | + | <p><math>((x)\ y)\!</math></p> |
| <p><math>((x)(y))\!</math></p> | | <p><math>((x)(y))\!</math></p> |
| |} | | |} |
Line 3,092: |
Line 3,092: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p><br> | + | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> |
− | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p><br> | + | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> |
− | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p><br> | + | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p> |
| <p><math>x\ \operatorname{or}\ y</math></p> | | <p><math>x\ \operatorname{or}\ y</math></p> |
| |} | | |} |
Line 3,100: |
Line 3,100: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x \lor \lnot y</math></p><br> | + | <p><math>\lnot x \lor \lnot y</math></p> |
− | <p><math>x \Rightarrow y</math></p><br> | + | <p><math>x \Rightarrow y</math></p> |
− | <p><math>x \Leftarrow y</math></p><br> | + | <p><math>x \Leftarrow y</math></p> |
| <p><math>x \lor y</math></p> | | <p><math>x \lor y</math></p> |
| |} | | |} |
Line 3,115: |
Line 3,115: |
| <br> | | <br> |
| | | |
− | ===Variant 3=== | + | ===Table 2 : Variant 2=== |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 3,151: |
Line 3,151: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{1}\!</math></p> | + | <p><math>f_{1}\!</math></p><br> |
− | <p><math>f_{2}\!</math></p> | + | <p><math>f_{2}\!</math></p><br> |
− | <p><math>f_{4}\!</math></p> | + | <p><math>f_{4}\!</math></p><br> |
| <p><math>f_{8}\!</math></p> | | <p><math>f_{8}\!</math></p> |
| |} | | |} |
Line 3,159: |
Line 3,159: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0001}\!</math></p> | + | <p><math>f_{0001}\!</math></p><br> |
− | <p><math>f_{0010}\!</math></p> | + | <p><math>f_{0010}\!</math></p><br> |
− | <p><math>f_{0100}\!</math></p> | + | <p><math>f_{0100}\!</math></p><br> |
| <p><math>f_{1000}\!</math></p> | | <p><math>f_{1000}\!</math></p> |
| |} | | |} |
Line 3,167: |
Line 3,167: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 0 0 1</p> | + | <p>0 0 0 1</p><br> |
− | <p>0 0 1 0</p> | + | <p>0 0 1 0</p><br> |
− | <p>0 1 0 0</p> | + | <p>0 1 0 0</p><br> |
| <p>1 0 0 0</p> | | <p>1 0 0 0</p> |
| |} | | |} |
Line 3,175: |
Line 3,175: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x)(y)\!</math></p> | + | <p><math>(x)(y)\!</math></p><br> |
− | <p><math>(x)\ y\!</math></p> | + | <p><math>(x)\ y\!</math></p><br> |
− | <p><math>x\ (y)\!</math></p> | + | <p><math>x\ (y)\!</math></p><br> |
| <p><math>x\ y\!</math></p> | | <p><math>x\ y\!</math></p> |
| |} | | |} |
Line 3,183: |
Line 3,183: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> | + | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p><br> |
− | <p><math>y\ \operatorname{without}\ x</math></p> | + | <p><math>y\ \operatorname{without}\ x</math></p><br> |
− | <p><math>x\ \operatorname{without}\ y</math></p> | + | <p><math>x\ \operatorname{without}\ y</math></p><br> |
| <p><math>x\ \operatorname{and}\ y</math></p> | | <p><math>x\ \operatorname{and}\ y</math></p> |
| |} | | |} |
Line 3,191: |
Line 3,191: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x \land \lnot y</math></p> | + | <p><math>\lnot x \land \lnot y</math></p><br> |
− | <p><math>\lnot x \land y</math></p> | + | <p><math>\lnot x \land y</math></p><br> |
− | <p><math>x \land \lnot y</math></p> | + | <p><math>x \land \lnot y</math></p><br> |
| <p><math>x \land y</math></p> | | <p><math>x \land y</math></p> |
| |} | | |} |
Line 3,200: |
Line 3,200: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{3}\!</math></p> | + | <p><math>f_{3}\!</math></p><br> |
| <p><math>f_{12}\!</math></p> | | <p><math>f_{12}\!</math></p> |
| |} | | |} |
Line 3,206: |
Line 3,206: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0011}\!</math></p> | + | <p><math>f_{0011}\!</math></p><br> |
| <p><math>f_{1100}\!</math></p> | | <p><math>f_{1100}\!</math></p> |
| |} | | |} |
Line 3,212: |
Line 3,212: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 0 1 1</p> | + | <p>0 0 1 1</p><br> |
| <p>1 1 0 0</p> | | <p>1 1 0 0</p> |
| |} | | |} |
Line 3,218: |
Line 3,218: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x)\!</math></p> | + | <p><math>(x)\!</math></p><br> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 3,224: |
Line 3,224: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not}\ x</math></p> | + | <p><math>\operatorname{not}\ x</math></p><br> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 3,230: |
Line 3,230: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x</math></p> | + | <p><math>\lnot x</math></p><br> |
| <p><math>x\!</math></p> | | <p><math>x\!</math></p> |
| |} | | |} |
Line 3,237: |
Line 3,237: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{6}\!</math></p> | + | <p><math>f_{6}\!</math></p><br> |
| <p><math>f_{9}\!</math></p> | | <p><math>f_{9}\!</math></p> |
| |} | | |} |
Line 3,243: |
Line 3,243: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0110}\!</math></p> | + | <p><math>f_{0110}\!</math></p><br> |
| <p><math>f_{1001}\!</math></p> | | <p><math>f_{1001}\!</math></p> |
| |} | | |} |
Line 3,249: |
Line 3,249: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 1 0</p> | + | <p>0 1 1 0</p><br> |
| <p>1 0 0 1</p> | | <p>1 0 0 1</p> |
| |} | | |} |
Line 3,255: |
Line 3,255: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x,\ y)\!</math></p> | + | <p><math>(x,\ y)\!</math></p><br> |
| <p><math>((x,\ y))\!</math></p> | | <p><math>((x,\ y))\!</math></p> |
| |} | | |} |
Line 3,261: |
Line 3,261: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> | + | <p><math>x\ \operatorname{not~equal~to}\ y</math></p><br> |
| <p><math>x\ \operatorname{equal~to}\ y</math></p> | | <p><math>x\ \operatorname{equal~to}\ y</math></p> |
| |} | | |} |
Line 3,267: |
Line 3,267: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>x \ne y</math></p> | + | <p><math>x \ne y</math></p><br> |
| <p><math>x = y\!</math></p> | | <p><math>x = y\!</math></p> |
| |} | | |} |
Line 3,274: |
Line 3,274: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{5}\!</math></p> | + | <p><math>f_{5}\!</math></p><br> |
| <p><math>f_{10}\!</math></p> | | <p><math>f_{10}\!</math></p> |
| |} | | |} |
Line 3,280: |
Line 3,280: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0101}\!</math></p> | + | <p><math>f_{0101}\!</math></p><br> |
| <p><math>f_{1010}\!</math></p> | | <p><math>f_{1010}\!</math></p> |
| |} | | |} |
Line 3,286: |
Line 3,286: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 0 1</p> | + | <p>0 1 0 1</p><br> |
| <p>1 0 1 0</p> | | <p>1 0 1 0</p> |
| |} | | |} |
Line 3,292: |
Line 3,292: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(y)\!</math></p> | + | <p><math>(y)\!</math></p><br> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,298: |
Line 3,298: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not}\ y</math></p> | + | <p><math>\operatorname{not}\ y</math></p><br> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,304: |
Line 3,304: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot y</math></p> | + | <p><math>\lnot y</math></p><br> |
| <p><math>y\!</math></p> | | <p><math>y\!</math></p> |
| |} | | |} |
Line 3,311: |
Line 3,311: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{7}\!</math></p> | + | <p><math>f_{7}\!</math></p><br> |
− | <p><math>f_{11}\!</math></p> | + | <p><math>f_{11}\!</math></p><br> |
− | <p><math>f_{13}\!</math></p> | + | <p><math>f_{13}\!</math></p><br> |
| <p><math>f_{14}\!</math></p> | | <p><math>f_{14}\!</math></p> |
| |} | | |} |
Line 3,319: |
Line 3,319: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>f_{0111}\!</math></p> | + | <p><math>f_{0111}\!</math></p><br> |
− | <p><math>f_{1011}\!</math></p> | + | <p><math>f_{1011}\!</math></p><br> |
− | <p><math>f_{1101}\!</math></p> | + | <p><math>f_{1101}\!</math></p><br> |
| <p><math>f_{1110}\!</math></p> | | <p><math>f_{1110}\!</math></p> |
| |} | | |} |
Line 3,327: |
Line 3,327: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p>0 1 1 1</p> | + | <p>0 1 1 1</p><br> |
− | <p>1 0 1 1</p> | + | <p>1 0 1 1</p><br> |
− | <p>1 1 0 1</p> | + | <p>1 1 0 1</p><br> |
| <p>1 1 1 0</p> | | <p>1 1 1 0</p> |
| |} | | |} |
Line 3,335: |
Line 3,335: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>(x\ y)\!</math></p> | + | <p><math>(x\ y)\!</math></p><br> |
− | <p><math>(x\ (y))\!</math></p> | + | <p><math>(x\ (y))\!</math></p><br> |
− | <p><math>((x)\ y)\!</math></p> | + | <p><math>((x)\ y)\!</math></p><br> |
| <p><math>((x)(y))\!</math></p> | | <p><math>((x)(y))\!</math></p> |
| |} | | |} |
Line 3,343: |
Line 3,343: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> | + | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p><br> |
− | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> | + | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p><br> |
− | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p> | + | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p><br> |
| <p><math>x\ \operatorname{or}\ y</math></p> | | <p><math>x\ \operatorname{or}\ y</math></p> |
| |} | | |} |
Line 3,351: |
Line 3,351: |
| {| align="center" | | {| align="center" |
| | | | | |
− | <p><math>\lnot x \lor \lnot y</math></p> | + | <p><math>\lnot x \lor \lnot y</math></p><br> |
− | <p><math>x \Rightarrow y</math></p> | + | <p><math>x \Rightarrow y</math></p><br> |
− | <p><math>x \Leftarrow y</math></p> | + | <p><math>x \Leftarrow y</math></p><br> |
| <p><math>x \lor y</math></p> | | <p><math>x \lor y</math></p> |
| |} | | |} |
Line 3,366: |
Line 3,366: |
| <br> | | <br> |
| | | |
− | ===Variant 4=== | + | ===Table 2 : Variant 3=== |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 3,585: |
Line 3,585: |
| |} | | |} |
| <br> | | <br> |
| + | |
| + | ===Tables 3, 4, 5, 6=== |
| | | |
| The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. | | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 2. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' | + | |+ '''Table 3. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | style="width:16%" | | | | style="width:16%" | |
Line 3,712: |
Line 3,714: |
| | | |
| <pre> | | <pre> |
− | Table 3. Df Expanded Over Ordinary Features {x, y} | + | Table 4. Df Expanded Over Ordinary Features {x, y} |
| o------o------------o------------o------------o------------o------------o | | o------o------------o------------o------------o------------o------------o |
| | | | | | | | | | | | | | | | | |
Line 3,766: |
Line 3,768: |
| </pre> | | </pre> |
| <pre> | | <pre> |
− | Table 4. Ef Expanded Over Differential Features {dx, dy} | + | Table 5. Ef Expanded Over Differential Features {dx, dy} |
| o------o------------o------------o------------o------------o------------o | | o------o------------o------------o------------o------------o------------o |
| | | | | | | | | | | | | | | | | |
Line 3,826: |
Line 3,828: |
| </pre> | | </pre> |
| <pre> | | <pre> |
− | Table 5. Df Expanded Over Differential Features {dx, dy} | + | Table 6. Df Expanded Over Differential Features {dx, dy} |
| o------o------------o------------o------------o------------o------------o | | o------o------------o------------o------------o------------o------------o |
| | | | | | | | | | | | | | | | | |