Changes

→‎Work Area: adjust head, add working material
Line 2,078: Line 2,078:  
<br>
 
<br>
   −
==Work Area==
+
=Work Area 1=
 +
 
 +
==Propositional Forms on Two Variables==
 +
 
 +
To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math>  For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
 +
 
 +
By way of initial orientation, Table&nbsp;1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.
    
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
Line 2,308: Line 2,314:  
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>[\mathbb{D}^n]</math>
 
<math>[\mathbb{D}^n]</math>
 +
|}<br>
 +
 +
=Work Area 2=
 +
 +
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 +
|+ '''Table 1.  Propositional Forms on Two Variables'''
 +
|- style="background:ghostwhite"
 +
| style="width:16%" | <math>\mathcal{L}_1</math>
 +
| style="width:16%" | <math>\mathcal{L}_2</math>
 +
| style="width:16%" | <math>\mathcal{L}_3</math>
 +
| style="width:16%" | <math>\mathcal{L}_4</math>
 +
| style="width:16%" | <math>\mathcal{L}_5</math>
 +
| style="width:16%" | <math>\mathcal{L}_6</math>
 +
|- style="background:ghostwhite"
 +
| &nbsp;
 +
| align="right" | <math>x\!</math> :
 +
| 1 1 0 0
 +
| &nbsp;
 +
| &nbsp;
 +
| &nbsp;
 +
|- style="background:ghostwhite"
 +
| &nbsp;
 +
| align="right" | <math>y\!</math> :
 +
| 1 0 1 0
 +
| &nbsp;
 +
| &nbsp;
 +
| &nbsp;
 +
|-
 +
| <math>f_{0}\!</math>
 +
| <math>f_{0000}\!</math>
 +
| 0 0 0 0
 +
| <math>(\!|~|\!)</math>
 +
| false
 +
| <math>0\!</math>
 +
|-
 +
| <math>f_{1}\!</math>
 +
| <math>f_{0001}\!</math>
 +
| 0 0 0 1
 +
| <math>(\!|x|\!)(\!|y|\!)</math>
 +
| neither x nor y
 +
| <math>\lnot x \land \lnot y</math>
 +
|-
 +
| <math>f_{2}\!</math>
 +
| <math>f_{0010}\!</math>
 +
| 0 0 1 0
 +
| <math>(\!|x|\!)\ y</math>
 +
| y and not x
 +
| <math>\lnot x \land y</math>
 +
|-
 +
| <math>f_{3}\!</math>
 +
| <math>f_{0011}\!</math>
 +
| 0 0 1 1
 +
| <math>(\!|x|\!)</math>
 +
| not x
 +
| <math>\lnot x</math>
 +
|-
 +
| <math>f_{4}\!</math>
 +
| <math>f_{0100}\!</math>
 +
| 0 1 0 0
 +
| <math>x\ (\!|y|\!)</math>
 +
| x and not y
 +
| <math>x \land \lnot y</math>
 +
|-
 +
| <math>f_{5}\!</math>
 +
| <math>f_{0101}\!</math>
 +
| 0 1 0 1
 +
| <math>(\!|y|\!)</math>
 +
| not y
 +
| <math>\lnot y</math>
 +
|-
 +
| <math>f_{6}\!</math>
 +
| <math>f_{0110}\!</math>
 +
| 0 1 1 0
 +
| <math>(\!|x,\ y|\!)</math>
 +
| x not equal to y
 +
| <math>x \ne y</math>
 +
|-
 +
| <math>f_{7}\!</math>
 +
| <math>f_{0111}\!</math>
 +
| 0 1 1 1
 +
| <math>(\!|x\ y|\!)</math>
 +
| not both x and y
 +
| <math>\lnot x \lor \lnot y</math>
 +
|-
 +
| <math>f_{8}\!</math>
 +
| <math>f_{1000}\!</math>
 +
| 1 0 0 0
 +
| <math>x\ y</math>
 +
| x and y
 +
| <math>x \land y</math>
 +
|-
 +
| <math>f_{9}\!</math>
 +
| <math>f_{1001}\!</math>
 +
| 1 0 0 1
 +
| <math>(\!|(\!|x,\ y|\!)|\!)</math>
 +
| x equal to y
 +
| <math>x = y\!</math>
 +
|-
 +
| <math>f_{10}\!</math>
 +
| <math>f_{1010}\!</math>
 +
| 1 0 1 0
 +
| <math>y\!</math>
 +
| y
 +
| <math>y\!</math>
 +
|-
 +
| <math>f_{11}\!</math>
 +
| <math>f_{1011}\!</math>
 +
| 1 0 1 1
 +
| <math>(\!|x\ (\!|y|\!)|\!)</math>
 +
| not x without y
 +
| <math>x \Rightarrow y</math>
 +
|-
 +
| <math>f_{12}\!</math>
 +
| <math>f_{1100}\!</math>
 +
| 1 1 0 0
 +
| <math>x\!</math>
 +
| x
 +
| <math>x\!</math>
 +
|-
 +
| <math>f_{13}\!</math>
 +
| <math>f_{1101}\!</math>
 +
| 1 1 0 1
 +
| <math>(\!|(\!|x|\!)\ y|\!)</math>
 +
| not y without x
 +
| <math>x \Leftarrow y</math>
 +
|-
 +
| <math>f_{14}\!</math>
 +
| <math>f_{1110}\!</math>
 +
| 1 1 1 0
 +
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
 +
| x or y
 +
| <math>x \lor y</math>
 +
|-
 +
| <math>f_{15}\!</math>
 +
| <math>f_{1111}\!</math>
 +
| 1 1 1 1
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 +
| true
 +
| <math>1\!</math>
 +
|}<br>
 +
 +
The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions.  Notice that the functions are given in a different order, here being collected into a set of seven natural classes.
 +
 +
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 +
|+ '''Table 2.  <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''
 +
|- style="background:ghostwhite"
 +
| style="width:16%" | &nbsp;
 +
| style="width:16%" | <math>f\!</math>
 +
| style="width:16%" | <math>\operatorname{E}f|_{xy}</math>
 +
| style="width:16%" | <math>\operatorname{E}f|_{x(\!|y|\!)}</math>
 +
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)y}</math>
 +
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)(\!|y|\!)}</math>
 +
|-
 +
| <math>f_{0}\!</math>
 +
| <math>(\!|~|\!)</math>
 +
| <math>(\!|~|\!)</math>
 +
| <math>(\!|~|\!)</math>
 +
| <math>(\!|~|\!)</math>
 +
| <math>(\!|~|\!)</math>
 +
|-
 +
| <math>f_{1}\!</math>
 +
| <math>(\!|x|\!)(\!|y|\!)</math>
 +
| <math>\operatorname{d}x\ \operatorname{d}y</math>
 +
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{2}\!</math>
 +
| <math>(\!|x|\!) y</math>
 +
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}x\ \operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
 +
|-
 +
| <math>f_{4}\!</math>
 +
| <math>x (\!|y|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}x\ \operatorname{d}y</math>
 +
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{8}\!</math>
 +
| <math>x y\!</math>
 +
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
 +
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}x\ \operatorname{d}y</math>
 +
|-
 +
| <math>f_{3}\!</math>
 +
| <math>(\!|x|\!)</math>
 +
| <math>\operatorname{d}x</math>
 +
| <math>\operatorname{d}x</math>
 +
| <math>(\!|\operatorname{d}x|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!)</math>
 +
|-
 +
| <math>f_{12}\!</math>
 +
| <math>x\!</math>
 +
| <math>(\!|\operatorname{d}x|\!)</math>
 +
| <math>(\!|\operatorname{d}x|\!)</math>
 +
| <math>\operatorname{d}x</math>
 +
| <math>\operatorname{d}x</math>
 +
|-
 +
| <math>f_{6}\!</math>
 +
| <math>(\!|x, y|\!)</math>
 +
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{9}\!</math>
 +
| <math>(\!|(\!|x, y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
 +
|-
 +
| <math>f_{5}\!</math>
 +
| <math>(\!|y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{10}\!</math>
 +
| <math>y\!</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
|-
 +
| <math>f_{7}\!</math>
 +
| <math>(\!|x y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{11}\!</math>
 +
| <math>(\!|x (\!|y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
 +
|-
 +
| <math>f_{13}\!</math>
 +
| <math>(\!|(\!|x|\!) y|\!)</math>
 +
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{14}\!</math>
 +
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 +
|-
 +
| <math>f_{15}\!</math>
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 +
| <math>(\!|(\!|~|\!)|\!)</math>
 
|}<br>
 
|}<br>
12,080

edits