Line 2,078: |
Line 2,078: |
| <br> | | <br> |
| | | |
− | ==Work Area==
| + | =Work Area 1= |
| + | |
| + | ==Propositional Forms on Two Variables== |
| + | |
| + | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. |
| + | |
| + | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" |
Line 2,308: |
Line 2,314: |
| <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br> | | <math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br> |
| <math>[\mathbb{D}^n]</math> | | <math>[\mathbb{D}^n]</math> |
| + | |}<br> |
| + | |
| + | =Work Area 2= |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 1. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite" |
| + | | style="width:16%" | <math>\mathcal{L}_1</math> |
| + | | style="width:16%" | <math>\mathcal{L}_2</math> |
| + | | style="width:16%" | <math>\mathcal{L}_3</math> |
| + | | style="width:16%" | <math>\mathcal{L}_4</math> |
| + | | style="width:16%" | <math>\mathcal{L}_5</math> |
| + | | style="width:16%" | <math>\mathcal{L}_6</math> |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>x\!</math> : |
| + | | 1 1 0 0 |
| + | | |
| + | | |
| + | | |
| + | |- style="background:ghostwhite" |
| + | | |
| + | | align="right" | <math>y\!</math> : |
| + | | 1 0 1 0 |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | <math>f_{0000}\!</math> |
| + | | 0 0 0 0 |
| + | | <math>(\!|~|\!)</math> |
| + | | false |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | | <math>f_{0001}\!</math> |
| + | | 0 0 0 1 |
| + | | <math>(\!|x|\!)(\!|y|\!)</math> |
| + | | neither x nor y |
| + | | <math>\lnot x \land \lnot y</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | | <math>f_{0010}\!</math> |
| + | | 0 0 1 0 |
| + | | <math>(\!|x|\!)\ y</math> |
| + | | y and not x |
| + | | <math>\lnot x \land y</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | | <math>f_{0011}\!</math> |
| + | | 0 0 1 1 |
| + | | <math>(\!|x|\!)</math> |
| + | | not x |
| + | | <math>\lnot x</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | | <math>f_{0100}\!</math> |
| + | | 0 1 0 0 |
| + | | <math>x\ (\!|y|\!)</math> |
| + | | x and not y |
| + | | <math>x \land \lnot y</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | | <math>f_{0101}\!</math> |
| + | | 0 1 0 1 |
| + | | <math>(\!|y|\!)</math> |
| + | | not y |
| + | | <math>\lnot y</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | | <math>f_{0110}\!</math> |
| + | | 0 1 1 0 |
| + | | <math>(\!|x,\ y|\!)</math> |
| + | | x not equal to y |
| + | | <math>x \ne y</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | | <math>f_{0111}\!</math> |
| + | | 0 1 1 1 |
| + | | <math>(\!|x\ y|\!)</math> |
| + | | not both x and y |
| + | | <math>\lnot x \lor \lnot y</math> |
| + | |- |
| + | | <math>f_{8}\!</math> |
| + | | <math>f_{1000}\!</math> |
| + | | 1 0 0 0 |
| + | | <math>x\ y</math> |
| + | | x and y |
| + | | <math>x \land y</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | | <math>f_{1001}\!</math> |
| + | | 1 0 0 1 |
| + | | <math>(\!|(\!|x,\ y|\!)|\!)</math> |
| + | | x equal to y |
| + | | <math>x = y\!</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | | <math>f_{1010}\!</math> |
| + | | 1 0 1 0 |
| + | | <math>y\!</math> |
| + | | y |
| + | | <math>y\!</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | | <math>f_{1011}\!</math> |
| + | | 1 0 1 1 |
| + | | <math>(\!|x\ (\!|y|\!)|\!)</math> |
| + | | not x without y |
| + | | <math>x \Rightarrow y</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | | <math>f_{1100}\!</math> |
| + | | 1 1 0 0 |
| + | | <math>x\!</math> |
| + | | x |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | | <math>f_{1101}\!</math> |
| + | | 1 1 0 1 |
| + | | <math>(\!|(\!|x|\!)\ y|\!)</math> |
| + | | not y without x |
| + | | <math>x \Leftarrow y</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | | <math>f_{1110}\!</math> |
| + | | 1 1 1 0 |
| + | | <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math> |
| + | | x or y |
| + | | <math>x \lor y</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> |
| + | | 1 1 1 1 |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | | true |
| + | | <math>1\!</math> |
| + | |}<br> |
| + | |
| + | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 2. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
| + | |- style="background:ghostwhite" |
| + | | style="width:16%" | |
| + | | style="width:16%" | <math>f\!</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{xy}</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{x(\!|y|\!)}</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)y}</math> |
| + | | style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)(\!|y|\!)}</math> |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | <math>(\!|~|\!)</math> |
| + | | <math>(\!|~|\!)</math> |
| + | | <math>(\!|~|\!)</math> |
| + | | <math>(\!|~|\!)</math> |
| + | | <math>(\!|~|\!)</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | | <math>(\!|x|\!)(\!|y|\!)</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y</math> |
| + | | <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | | <math>(\!|x|\!) y</math> |
| + | | <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | | <math>x (\!|y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y</math> |
| + | | <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{8}\!</math> |
| + | | <math>x y\!</math> |
| + | | <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math> |
| + | | <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | | <math>(\!|x|\!)</math> |
| + | | <math>\operatorname{d}x</math> |
| + | | <math>\operatorname{d}x</math> |
| + | | <math>(\!|\operatorname{d}x|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!)</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | | <math>x\!</math> |
| + | | <math>(\!|\operatorname{d}x|\!)</math> |
| + | | <math>(\!|\operatorname{d}x|\!)</math> |
| + | | <math>\operatorname{d}x</math> |
| + | | <math>\operatorname{d}x</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | | <math>(\!|x, y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | | <math>(\!|(\!|x, y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | | <math>(\!|y|\!)</math> |
| + | | <math>\operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | | <math>y\!</math> |
| + | | <math>(\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}y</math> |
| + | | <math>(\!|\operatorname{d}y|\!)</math> |
| + | | <math>\operatorname{d}y</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | | <math>(\!|x y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | | <math>(\!|x (\!|y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | | <math>(\!|(\!|x|\!) y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | | <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math> |
| + | | <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math> |
| + | | <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math> |
| + | | <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| + | | <math>(\!|(\!|~|\!)|\!)</math> |
| |}<br> | | |}<br> |