Line 6: |
Line 6: |
| \PMlinkescapephrase{calculus} | | \PMlinkescapephrase{calculus} |
| \PMlinkescapephrase{Calculus} | | \PMlinkescapephrase{Calculus} |
| + | \PMlinkescapephrase{cell} |
| + | \PMlinkescapephrase{Cell} |
| \PMlinkescapephrase{circle} | | \PMlinkescapephrase{circle} |
| \PMlinkescapephrase{Circle} | | \PMlinkescapephrase{Circle} |
Line 14: |
Line 16: |
| \PMlinkescapephrase{divides} | | \PMlinkescapephrase{divides} |
| \PMlinkescapephrase{Divides} | | \PMlinkescapephrase{Divides} |
| + | \PMlinkescapephrase{extension} |
| + | \PMlinkescapephrase{Extension} |
| \PMlinkescapephrase{language} | | \PMlinkescapephrase{language} |
| \PMlinkescapephrase{Language} | | \PMlinkescapephrase{Language} |
Line 177: |
Line 181: |
| \section{Formal development} | | \section{Formal development} |
| | | |
− | Table 4 | + | The preceding discussion outlined the ideas leading to the differential extension of propositional logic. The next task is to lay out the concepts and terminology that are needed to describe various orders of differential propositional calculi. |
| + | |
| + | Table 4 summarizes the basic notations that are needed to describe ordinary propositional calculi in a parametric fashion. |
| | | |
| \begin{center}\begin{tabular}{|l|l|l|l|} | | \begin{center}\begin{tabular}{|l|l|l|l|} |
Line 211: |
Line 217: |
| \end{tabular}\end{center} | | \end{tabular}\end{center} |
| | | |
− | Table 5 | + | Table 5 summarizes the basic notations that are needed to describe the (first order) differential extensions of propositional calculi in a corresponding manner. |
| | | |
| \begin{center}\begin{tabular}{|l|l|l|l|} | | \begin{center}\begin{tabular}{|l|l|l|l|} |