Changes

Line 166: Line 166:     
\begin{center}\begin{tabular}{ccccccc}
 
\begin{center}\begin{tabular}{ccccccc}
\multicolumn{7}{c}{Table 3.  Differential Inference Rules} \\[12pt]
+
\multicolumn{7}{c}{\textbf{Table 3.  Differential Inference Rules}} \\[12pt]
 
From & $\overline{q}$ & and & $\overline{\operatorname{d}q}$ & infer & $\overline{q}$ & next. \\[6pt]
 
From & $\overline{q}$ & and & $\overline{\operatorname{d}q}$ & infer & $\overline{q}$ & next. \\[6pt]
 
From & $\overline{q}$ & and & $\operatorname{d}q$ & infer & $q$ & next. \\[6pt]
 
From & $\overline{q}$ & and & $\operatorname{d}q$ & infer & $q$ & next. \\[6pt]
Line 176: Line 176:     
\section{Formal development}
 
\section{Formal development}
 +
 +
\begin{center}\begin{tabular}{|l|l|l|l|}
 +
\multicolumn{4}{c}{\textbf{Table 4.  Propositional Calculus : Basic Notation}} \\
 +
\hline
 +
\textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\
 +
\hline
 +
$\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\
 +
\hline
 +
$A_i$ & $\{ (a_i), a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\
 +
\hline
 +
$A$ & $\langle \mathcal{A} \rangle$      & Set of cells,      & $\mathbb{B}^n$ \\
 +
    & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\
 +
    & $\{ (a_1, \ldots, a_n) \}$        & points, or vectors & \\
 +
    & $A_1 \times \ldots \times A_n$    & in the universe    & \\
 +
    & $\textstyle \prod_{i=1}^n A_i$    & of discourse      & \\
 +
\hline
 +
$A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions &
 +
$(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\
 +
\hline
 +
$A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions &
 +
$\mathbb{B}^n \to \mathbb{B}$ \\
 +
\hline
 +
$A^\circ$ & $[ \mathcal{A} ]$        & Universe of discourse    &
 +
$(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$                  \\
 +
          & $(A, A^\uparrow)$        & based on the features    &
 +
$(\mathbb{B}^n\ +\!\to \mathbb{B})$                              \\
 +
          & $(A\ +\!\to \mathbb{B})$  & $\{ a_1, \ldots, a_n \}$ &
 +
$[\mathbb{B}^n]$                                                \\
 +
          & $(A, (A \to \mathbb{B}))$ & & \\
 +
          & $[ a_1, \ldots, a_n ]$    & & \\
 +
\hline
 +
\end{tabular}\end{center}
    
$\ldots$
 
$\ldots$
12,080

edits