Line 166: |
Line 166: |
| | | |
| \begin{center}\begin{tabular}{ccccccc} | | \begin{center}\begin{tabular}{ccccccc} |
− | \multicolumn{7}{c}{Table 3. Differential Inference Rules} \\[12pt] | + | \multicolumn{7}{c}{\textbf{Table 3. Differential Inference Rules}} \\[12pt] |
| From & $\overline{q}$ & and & $\overline{\operatorname{d}q}$ & infer & $\overline{q}$ & next. \\[6pt] | | From & $\overline{q}$ & and & $\overline{\operatorname{d}q}$ & infer & $\overline{q}$ & next. \\[6pt] |
| From & $\overline{q}$ & and & $\operatorname{d}q$ & infer & $q$ & next. \\[6pt] | | From & $\overline{q}$ & and & $\operatorname{d}q$ & infer & $q$ & next. \\[6pt] |
Line 176: |
Line 176: |
| | | |
| \section{Formal development} | | \section{Formal development} |
| + | |
| + | \begin{center}\begin{tabular}{|l|l|l|l|} |
| + | \multicolumn{4}{c}{\textbf{Table 4. Propositional Calculus : Basic Notation}} \\ |
| + | \hline |
| + | \textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\ |
| + | \hline |
| + | $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\ |
| + | \hline |
| + | $A_i$ & $\{ (a_i), a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\ |
| + | \hline |
| + | $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\ |
| + | & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\ |
| + | & $\{ (a_1, \ldots, a_n) \}$ & points, or vectors & \\ |
| + | & $A_1 \times \ldots \times A_n$ & in the universe & \\ |
| + | & $\textstyle \prod_{i=1}^n A_i$ & of discourse & \\ |
| + | \hline |
| + | $A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions & |
| + | $(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\ |
| + | \hline |
| + | $A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions & |
| + | $\mathbb{B}^n \to \mathbb{B}$ \\ |
| + | \hline |
| + | $A^\circ$ & $[ \mathcal{A} ]$ & Universe of discourse & |
| + | $(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$ \\ |
| + | & $(A, A^\uparrow)$ & based on the features & |
| + | $(\mathbb{B}^n\ +\!\to \mathbb{B})$ \\ |
| + | & $(A\ +\!\to \mathbb{B})$ & $\{ a_1, \ldots, a_n \}$ & |
| + | $[\mathbb{B}^n]$ \\ |
| + | & $(A, (A \to \mathbb{B}))$ & & \\ |
| + | & $[ a_1, \ldots, a_n ]$ & & \\ |
| + | \hline |
| + | \end{tabular}\end{center} |
| | | |
| $\ldots$ | | $\ldots$ |