Line 1,867: |
Line 1,867: |
| |} | | |} |
| <br> | | <br> |
| + | |
| + | A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus. |
| + | |
| + | With these constructions, to be specific, the differential extension E''A'' and the differential proposition ''h'' : E''A'' → '''B''', we have arrived, in concept at least, at one of the major subgoals of this study. At this juncture, I pause by way of summary to set another Table with the current crop of mathematical produce (Table 8). |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
| + | |+ '''Table 8. Notation for the Differential Extension of Propositional Calculus''' |
| + | |- style="background:paleturquoise" |
| + | ! Symbol |
| + | ! Notation |
| + | ! Description |
| + | ! Type |
| + | |- |
| + | | d<font face="lucida calligraphy">A<font> |
| + | | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>} |
| + | | |
| + | Alphabet of<br> |
| + | differential<br> |
| + | features |
| + | | [''n''] = '''n''' |
| + | |- |
| + | | d''A''<sub>''i''</sub> |
| + | | {(d''a''<sub>''i''</sub>), d''a''<sub>''i''</sub>} |
| + | | |
| + | Differential<br> |
| + | dimension ''i'' |
| + | | '''D''' |
| + | |- |
| + | | d''A'' |
| + | | |
| + | 〈d<font face="lucida calligraphy">A</font>〉<br> |
| + | 〈d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉<br> |
| + | {‹d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>›}<br> |
| + | d''A''<sub>1</sub> × … × d''A''<sub>''n''</sub><br> |
| + | ∏<sub>''i''</sub> d''A''<sub>''i''</sub> |
| + | | |
| + | Tangent space<br> |
| + | at a point:<br> |
| + | Set of changes,<br> |
| + | motions, steps,<br> |
| + | tangent vectors<br> |
| + | at a point |
| + | | '''D'''<sup>''n''</sup> |
| + | |- |
| + | | d''A''* |
| + | | (hom : d''A'' → '''B''') |
| + | | |
| + | Linear functions<br> |
| + | on d''A'' |
| + | | ('''D'''<sup>''n''</sup>)* = '''D'''<sup>''n''</sup> |
| + | |- |
| + | | d''A''^ |
| + | | (d''A'' → '''B''') |
| + | | |
| + | Boolean functions<br> |
| + | on d''A'' |
| + | | '''D'''<sup>''n''</sup> → '''B''' |
| + | |- |
| + | | d''A''<sup>•</sup> |
| + | | |
| + | [d<font face="lucida calligraphy">A</font>]<br> |
| + | (d''A'', d''A''^)<br> |
| + | (d''A'' +→ '''B''')<br> |
| + | (d''A'', (d''A'' → '''B'''))<br> |
| + | [d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>] |
| + | | |
| + | Tangent universe<br> |
| + | at a point of ''A''<sup>•</sup>,<br> |
| + | based on the<br> |
| + | tangent features<br> |
| + | {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>} |
| + | | |
| + | ('''D'''<sup>''n''</sup>, ('''D'''<sup>''n''</sup> → '''B'''))<br> |
| + | ('''D'''<sup>''n''</sup> +→ '''B''')<br> |
| + | ['''D'''<sup>''n''</sup>] |
| + | |} |
| + | </font><br> |