Table 5 sums up the facts of the physical situation at equilibrium. If we let <math>\mathbf{B} = \{ \mathrm{note}, \mathrm{rest} \} = \{ \mathrm{moving}, \mathrm{steady} \} = \{ \mathrm{charged}, \mathrm{resting} \},</math> or whatever candidates you pick for the 2-membered set in question, the Table shows a function <math>f : \mathbf{B} \times \mathbf{B} \to \mathbf{B}</math>, where <math>f(x, y) = (x, y).\!</math>
<pre>
<pre>
−
Table 5 sums up the facts of the physical situation at equilibrium.
−
If we let B = {note, rest} = {moving, steady} = {charged, resting},
−
or whatever candidates you pick for the 2-membered set in question,
−
the Table shows a function f : B x B -> B, where f[x, y] = (x , y).