Line 2,093: |
Line 2,093: |
| With respect to each edge <math>x\!</math> of the cell we consider a test proposition <math>\operatorname{d}x</math> that determines our decision whether or not we will make a difference in how we stand regarding <math>x\!</math>. If <math>\operatorname{d}x</math> is true then it marks our decision, intention, or plan to cross over the edge <math>x\!</math> at some point within the purview of the contemplated plan. | | With respect to each edge <math>x\!</math> of the cell we consider a test proposition <math>\operatorname{d}x</math> that determines our decision whether or not we will make a difference in how we stand regarding <math>x\!</math>. If <math>\operatorname{d}x</math> is true then it marks our decision, intention, or plan to cross over the edge <math>x\!</math> at some point within the purview of the contemplated plan. |
| | | |
− | <pre>
| + | To reckon the effect of several such decisions on our current interpretation, or the value of the reigning proposition, we transform that position or that proposition by making the following array of substitutions everywhere in its expression: |
− | To reckon the effect of several such decisions on our current interpretation, | |
− | or the value of the reigning proposition, we transform that position or that | |
− | proposition by making the following array of substitutions everywhere in its | |
− | expression: | |
| | | |
− | 1. Substitute "( x_1 , dx_1 )" for "x_1"
| + | <blockquote> |
− | 2. Substitute "( x_2 , dx_2 )" for "x_2"
| + | <p><math>1.\!</math> Substitute "<math>(x_1, \operatorname{d}x_1)</math>" for "<math>x_1\!</math>"</p> |
− | 3. Substitute "( x_3 , dx_3 )" for "x_3"
| + | <p><math>2.\!</math> Substitute "<math>(x_2, \operatorname{d}x_2)</math>" for "<math>x_2\!</math>"</p> |
− | ...
| + | <p><math>3.\!</math> Substitute "<math>(x_3, \operatorname{d}x_3)</math>" for "<math>x_3\!</math>"</p> |
− | k. Substitute "( x_k , dx_k )" for "x_k"
| + | <p><math>\ldots</math></p> |
| + | <p><math>k.\!</math> Substitute "<math>(x_k, \operatorname{d}x_k)</math>" for "<math>x_k\!</math>"</p> |
| + | </blockquote> |
| | | |
− | For concreteness, consider the polymorphous set Q of Example 1 | + | For concreteness, consider the polymorphous set <math>Q\!</math> of Example 1 and focus on the central cell, specifically, the cell described by the conjunction of logical features in the expression "<math>u\ v\ w</math>". |
− | and focus on the central cell, specifically, the cell described | |
− | by the conjunction of logical features in the expression "u v w". | |
| | | |
| + | <pre> |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| | X | | | | X | |