Changes

1 byte removed ,  15:26, 27 February 2008
m
Line 24: Line 24:  
* Picture a ''k''-adic relation ''L'' as a body that resides in a ''k''-dimensional space ''X''.  If the domains of the relation ''L'' are ''X''<sub>1</sub>, …, ''X''<sub>''k''</sub> , then the ''extension'' of the relation ''L'' is a subset of the cartesian product ''X'' = ''X''<sub>1</sub> × … × ''X''<sub>''k''</sub> .
 
* Picture a ''k''-adic relation ''L'' as a body that resides in a ''k''-dimensional space ''X''.  If the domains of the relation ''L'' are ''X''<sub>1</sub>, …, ''X''<sub>''k''</sub> , then the ''extension'' of the relation ''L'' is a subset of the cartesian product ''X'' = ''X''<sub>1</sub> × … × ''X''<sub>''k''</sub> .
   −
In this setting, the interval ''K'' = [1, ''k''] = {1, ;…, ''k''} is called the ''[[index set]]'' of the ''[[indexed family]]'' of sets ''X''<sub>1</sub>, …, ''X''<sub>''k''</sub> .
+
In this setting, the interval ''K'' = [1, ''k''] = {1, …, ''k''} is called the ''[[index set]]'' of the ''[[indexed family]]'' of sets ''X''<sub>1</sub>, …, ''X''<sub>''k''</sub> .
    
For any subset ''F'' of the index set ''K'', there is the corresponding subfamily of sets, {''X''<sub>''j''</sub>&nbsp;:&nbsp;''j''&nbsp;&isin;&nbsp;''F''&nbsp;}, and there is the corresponding cartesian product over this subfamily, notated and defined as ''X''<sub>''F''</sub> = <font size="+2">&Pi;</font><sub>''j''&nbsp;&isin;&nbsp;''F''</sub>&nbsp;''X''<sub>''j''</sub>.
 
For any subset ''F'' of the index set ''K'', there is the corresponding subfamily of sets, {''X''<sub>''j''</sub>&nbsp;:&nbsp;''j''&nbsp;&isin;&nbsp;''F''&nbsp;}, and there is the corresponding cartesian product over this subfamily, notated and defined as ''X''<sub>''F''</sub> = <font size="+2">&Pi;</font><sub>''j''&nbsp;&isin;&nbsp;''F''</sub>&nbsp;''X''<sub>''j''</sub>.
12,080

edits