Changes

Line 2,594: Line 2,594:  
===Commentary Note 11.10===
 
===Commentary Note 11.10===
   −
<pre>
+
In the case of a 2-adic relation ''F''&nbsp;&sube;&nbsp;''X''&nbsp;&times;&nbsp;''Y'' that has the qualifications of a function ''f''&nbsp;:&nbsp;''X''&nbsp;&rarr;&nbsp;''Y'', there are a number of further differentia that arise:
In the case of a 2-adic relation F c X x Y that has
  −
the qualifications of a function f : X -> Y, there
  −
are a number of further differentia that arise:
     −
| f is "surjective"   iff   f is total at Y.
+
<blockquote>
|
+
{| cellpadding="4"
| f is "injective"   iff   f is tubular at Y.
+
| ''f'' is "surjective"
|
+
| iff
| f is "bijective"   iff   f is 1-regular at Y.
+
| ''f'' is total at ''Y''.
 +
|-
 +
| ''f'' is "injective"
 +
| iff
 +
| ''f'' is tubular at ''Y''.
 +
|-
 +
| ''f'' is "bijective"
 +
| iff
 +
| ''f'' is 1-regular at ''Y''.
 +
|}
 +
</blockquote>
   −
For example, or more precisely, contra example,
+
For example, or more precisely, contra example, the function ''f''&nbsp;:&nbsp;''X''&nbsp;&rarr;&nbsp;''Y'' that is depicted below is neither total at ''Y'' nor tubular at ''Y'', and so it cannot enjoy any of the properties of being sur-, or in-, or bi-jective.
the function f : X -> Y that is depicted below
  −
is neither total at Y nor tubular at Y, and so
  −
it cannot enjoy any of the properties of being
  −
sur-, or in-, or bi-jective.
      +
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
o  o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  o  X
Line 2,618: Line 2,622:  
o  o  o  o  o  o  o  o  o  o  Y
 
o  o  o  o  o  o  o  o  o  o  Y
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 +
</pre>
   −
A cheap way of getting a surjective function out of any function
+
A cheap way of getting a surjective function out of any function is to reset its codomain to its range.  For example, the range of the function ''f'' above is ''Y''&prime;&nbsp;=&nbsp;{0,&nbsp;2,&nbsp;5,&nbsp;6,&nbsp;7,&nbsp;8,&nbsp;9}.  Thus, if we form a new function ''g'' : ''X'' &rarr; ''Y''&prime; that looks just like ''f'' on the domain ''X'' but is assigned the codomain ''Y''&prime;, then ''g'' is surjective, and is described as mapping "onto" ''Y''&prime;.
is to reset its codomain to its range.  For example, the range
  −
of the function f above is Y'= {0, 2, 5, 6, 7, 8, 9}.  Thus,
  −
if we form a new function g : X -> Y' that looks just like
  −
f on the domain X but is assigned the codomain Y', then
  −
g is surjective, and is described as mapping "onto" Y'.
      +
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
o  o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  o  X
Line 2,633: Line 2,634:  
o      o          o  o  o  o  o  Y'
 
o      o          o  o  o  o  o  Y'
 
0      2          5  6  7  8  9
 
0      2          5  6  7  8  9
 +
</pre>
   −
The function h : Y' -> Y is injective.
+
The function ''h'' : ''Y''&prime; &rarr; ''Y'' is injective.
    +
<pre>
 
0      2          5  6  7  8  9
 
0      2          5  6  7  8  9
 
o      o          o  o  o  o  o  Y'
 
o      o          o  o  o  o  o  Y'
Line 2,643: Line 2,646:  
o  o  o  o  o  o  o  o  o  o  Y
 
o  o  o  o  o  o  o  o  o  o  Y
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 +
</pre>
   −
The function m : X -> Y is bijective.
+
The function ''m'' : ''X'' &rarr; ''Y'' is bijective.
    +
<pre>
 
0  1  2  3  4  5  6  7  8  9
 
0  1  2  3  4  5  6  7  8  9
 
o  o  o  o  o  o  o  o  o  o  X
 
o  o  o  o  o  o  o  o  o  o  X
12,080

edits