| Line 6,441: |
Line 6,441: |
| | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> , | | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> , |
| | |- | | |- |
| − | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) , | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
| | + | |- |
| | + | | → |
| | + | |- |
| | + | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) , |
| | |- | | |- |
| | | for each <font face=georgia>'''W'''</font> in the set: | | | for each <font face=georgia>'''W'''</font> in the set: |
| Line 6,455: |
Line 6,459: |
| | | | | | |
| | |- | | |- |
| − | | | + | | ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>], |
| | + | |- |
| | + | | ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>], |
| | + | |- |
| | + | | (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]) |
| | + | |- |
| | + | | → |
| | |- | | |- |
| − | | | + | | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]) |
| | |- | | |- |
| | | | | | |
| Line 6,522: |
Line 6,532: |
| | | | |
| | <pre> | | <pre> |
| − | | $W$ | $W$ : | Operator
| |
| − |
| |
| − | | | U% -> $T$U% = EU%, | | [B^2] -> [B^2 x D^2],
| |
| − |
| |
| − | | | X% -> $T$X% = EX%, | | [B^1] -> [B^1 x D^1],
| |
| − |
| |
| − | | | (U%->X%)->($T$U%->$T$X%)| | ([B^2] -> [B^1])
| |
| − |
| |
| − | | | for each $W$ among: | | ->
| |
| − |
| |
| − | | | $e$, $E$, $D$, $T$ | | ([B^2 x D^2]->[B^1 x D^1])
| |
| − |
| |
| − | -------------o
| |
| − |
| |
| | | $e$ || Radius Operator $e$ = <!e!, !h!> | | | $e$ || Radius Operator $e$ = <!e!, !h!> |
| | | $E$ || Secant Operator $E$ = <!e!, E > | | | $E$ || Secant Operator $E$ = <!e!, E > |
| | | $D$ || Chord Operator $D$ = <!e!, D > | | | $D$ || Chord Operator $D$ = <!e!, D > |
| | | $T$ || Tangent Functor $T$ = <!e!, d > | | | $T$ || Tangent Functor $T$ = <!e!, d > |
| − |
| |
| − | -------------o
| |
| | </pre> | | </pre> |
| | | | |