Line 6,506: |
Line 6,506: |
| -------------o | | -------------o |
| </pre> | | </pre> |
| + | |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
| + | |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
| + | |- style="background:paleturquoise" |
| + | ! Item |
| + | ! Notation |
| + | ! Description |
| + | ! Type |
| + | |- |
| + | | ''U''<sup> •</sup> |
| + | | = [''u'', ''v''] |
| + | | Source Universe |
| + | | ['''B'''<sup>2</sup>] |
| + | |- |
| + | | ''X''<sup> •</sup> |
| + | | = [''x''] |
| + | | Target Universe |
| + | | ['''B'''<sup>1</sup>] |
| + | |- |
| + | | E''U''<sup> •</sup> |
| + | | = [''u'', ''v'', d''u'', d''v''] |
| + | | Extended Source Universe |
| + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] |
| + | |- |
| + | | E''X''<sup> •</sup> |
| + | | = [''x'', d''x''] |
| + | | Extended Target Universe |
| + | | ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] |
| + | |- |
| + | | ''J'' |
| + | | ''J'' : ''U'' → '''B''' |
| + | | Proposition |
| + | | ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>] |
| + | |- |
| + | | ''J'' |
| + | | ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup> |
| + | | Transformation, or Mapping |
| + | | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>] |
| + | |- |
| + | | valign="top" | <p>W</p> |
| + | | valign="top" | <p>W :</p> |
| + | <p>''U''<sup> •</sup> → E''U''<sup> •</sup> ,</p> |
| + | <p>''X''<sup> •</sup> → E''X''<sup> •</sup> ,</p> |
| + | <p>(''U''<sup> •</sup>→''X''<sup> •</sup>) →<br> |
| + | E''U''<sup> •</sup>→E''X''<sup> •</sup>) ,</p> |
| + | <p>For each W in the set:<br> |
| + | {<math>\epsilon</math>, <math>\eta</math>, E, D, d}</p> |
| + | | valign="top" | <p>Operator</p> |
| + | | valign="top" | <p> <p> |
| + | <p>['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,</p> |
| + | <p>['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,</p> |
| + | <p>(['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]) →<br> |
| + | (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])</p> |
| + | <p> <br> </p> |
| + | |- |
| + | | |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <font face="lucida calligraphy">A<font> |
| + | | {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>} |
| + | | Alphabet |
| + | | [''n''] = '''n''' |
| + | |- |
| + | | ''A''<sub>''i''</sub> |
| + | | {(''a''<sub>''i''</sub>), ''a''<sub>''i''</sub>} |
| + | | Dimension ''i'' |
| + | | '''B''' |
| + | |- |
| + | | ''A'' |
| + | | |
| + | 〈<font face="lucida calligraphy">A</font>〉<br> |
| + | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>〉<br> |
| + | {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>›}<br> |
| + | ''A''<sub>1</sub> × … × ''A''<sub>''n''</sub><br> |
| + | ∏<sub>''i''</sub> ''A''<sub>''i''</sub> |
| + | | |
| + | Set of cells,<br> |
| + | coordinate tuples,<br> |
| + | points, or vectors<br> |
| + | in the universe<br> |
| + | of discourse |
| + | | '''B'''<sup>''n''</sup> |
| + | |- |
| + | | ''A''* |
| + | | (hom : ''A'' → '''B''') |
| + | | Linear functions |
| + | | ('''B'''<sup>''n''</sup>)* = '''B'''<sup>''n''</sup> |
| + | |- |
| + | | ''A''^ |
| + | | (''A'' → '''B''') |
| + | | Boolean functions |
| + | | '''B'''<sup>''n''</sup> → '''B''' |
| + | |- |
| + | | ''A''<sup>•</sup> |
| + | | |
| + | [<font face="lucida calligraphy">A</font>]<br> |
| + | (''A'', ''A''^)<br> |
| + | (''A'' +→ '''B''')<br> |
| + | (''A'', (''A'' → '''B'''))<br> |
| + | [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>] |
| + | | |
| + | Universe of discourse<br> |
| + | based on the features<br> |
| + | {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>} |
| + | | |
| + | ('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> → '''B'''))<br> |
| + | ('''B'''<sup>''n''</sup> +→ '''B''')<br> |
| + | ['''B'''<sup>''n''</sup>] |
| + | |}<br> |
| | | |
| ===Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | | ===Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |