Changes

Line 7,628: Line 7,628:  
</font><br>
 
</font><br>
   −
<pre>
+
<font face="courier new">
Table 66-ii.  Computation Summary for g<u, v> = ((u, v))
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
o--------------------------------------------------------------------------------o
+
|+ Table 66-ii.  Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))
|                                                                               |
+
|
| !e!g  = uv.    1     + u(v).    0     + (u)v.    0     + (u)(v).    1     |
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
|                                                                               |
+
| <math>\epsilon</math>''g''
|   Eg  = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
+
| = || ''uv''        || <math>\cdot</math> || 1
|                                                                               |
+
| + || ''u''(''v'')   || <math>\cdot</math> || 0
|   Dg  = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
| + || (''u'')''v''  || <math>\cdot</math> || 0
|                                                                               |
+
| + || (''u'')(''v'') || <math>\cdot</math> || 1
|   dg  = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
|-
|                                                                               |
+
| E''g''
|   rg  = uv.    0     + u(v).    0     + (u)v.    0     + (u)(v).    0     |
+
| = || ''uv''        || <math>\cdot</math> || ((d''u'', d''v''))
|                                                                               |
+
| + || ''u''(''v'')   || <math>\cdot</math> || (d''u'', d''v'')
o--------------------------------------------------------------------------------o
+
| + || (''u'')''v''  || <math>\cdot</math> || (d''u'', d''v'')
</pre>
+
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v''))
 +
|-
 +
| D''g''
 +
| = || ''uv''        || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || ''u''(''v'')   || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || (''u'')''v''  || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
 +
|-
 +
| d''g''
 +
| = || ''uv''        || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || ''u''(''v'')   || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || (''u'')''v''  || <math>\cdot</math> || (d''u'', d''v'')
 +
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
 +
|-
 +
| r''g''
 +
| = || ''uv''        || <math>\cdot</math> || 0
 +
| + || ''u''(''v'')   || <math>\cdot</math> || 0
 +
| + || (''u'')''v''  || <math>\cdot</math> || 0
 +
| + || (''u'')(''v'') || <math>\cdot</math> || 0
 +
|}
 +
|}
 +
</font><br>
    
Table&nbsp;67 shows how to compute the analytic series for ''F''&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;=&nbsp;‹((''u'')(''v'')),&nbsp;((''u'',&nbsp;''v''))› in terms of coordinates, and Table&nbsp;68 recaps these results in symbolic terms, agreeing with earlier derivations.
 
Table&nbsp;67 shows how to compute the analytic series for ''F''&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;=&nbsp;‹((''u'')(''v'')),&nbsp;((''u'',&nbsp;''v''))› in terms of coordinates, and Table&nbsp;68 recaps these results in symbolic terms, agreeing with earlier derivations.
12,080

edits