Line 7,628: |
Line 7,628: |
| </font><br> | | </font><br> |
| | | |
− | <pre> | + | <font face="courier new"> |
− | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | o--------------------------------------------------------------------------------o
| + | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) |
− | | | | + | | |
− | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | + | | <math>\epsilon</math>''g'' |
− | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | | + | | = || ''uv'' || <math>\cdot</math> || 1 |
− | | | | + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
− | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | | + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
− | | | | + | | + || (''u'')(''v'') || <math>\cdot</math> || 1 |
− | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | | + | |- |
− | | | | + | | E''g'' |
− | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | | + | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) |
− | | | | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
− | o--------------------------------------------------------------------------------o
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
− | </pre> | + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | d''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |} |
| + | |} |
| + | </font><br> |
| | | |
| Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations. | | Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations. |