Line 5,609: |
Line 5,609: |
| | align="center" | <math>\text{Map}\!</math> | | | align="center" | <math>\text{Map}\!</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Tacit}\\\text{extension}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Tacit}}\\\text{extension}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,627: |
Line 5,627: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Trope}\\\text{extension}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Trope}}\\\text{extension}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,645: |
Line 5,645: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Enlargement}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Enlargement}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,663: |
Line 5,663: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Difference}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Difference}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,681: |
Line 5,681: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Differential}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Differential}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,699: |
Line 5,699: |
| \end{array}\!</math> | | \end{array}\!</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Remainder}\\\text{operator}\end{matrix}\!</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Remainder}}\\\text{operator}\end{matrix}\!</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,717: |
Line 5,717: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Radius}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Radius}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,730: |
Line 5,730: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Secant}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Secant}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,743: |
Line 5,743: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Chord}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Chord}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 5,756: |
Line 5,756: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Tangent}\\\text{functor}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Tangent}}\\\text{functor}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,074: |
Line 6,074: |
| | align="center" | <math>\begin{matrix}\text{Transformation}\\\text{or}\\\text{Map}\end{matrix}</math> | | | align="center" | <math>\begin{matrix}\text{Transformation}\\\text{or}\\\text{Map}\end{matrix}</math> |
| |- | | |- |
− | | align="center" | <math>\underline\text{Operand}\!</math> | + | | align="center" | <math>\underline{\text{Operand}}\!</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,091: |
Line 6,091: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Tacit}\\\text{extension}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Tacit}}\\\text{extension}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,109: |
Line 6,109: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Trope}\\\text{extension}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Trope}}\\\text{extension}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,127: |
Line 6,127: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Enlargement}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Enlargement}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,145: |
Line 6,145: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Difference}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Difference}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,163: |
Line 6,163: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Differential}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Differential}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,181: |
Line 6,181: |
| \end{array}\!</math> | | \end{array}\!</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Remainder}\\\text{operator}\end{matrix}\!</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Remainder}}\\\text{operator}\end{matrix}\!</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,199: |
Line 6,199: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Radius}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Radius}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,212: |
Line 6,212: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Secant}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Secant}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,225: |
Line 6,225: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Chord}\\\text{operator}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Chord}}\\\text{operator}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 6,238: |
Line 6,238: |
| \end{array}</math> | | \end{array}</math> |
| |- | | |- |
− | | align="center" | <math>\begin{matrix}\underline\text{Tangent}\\\text{functor}\end{matrix}</math> | + | | align="center" | <math>\begin{matrix}\underline{\text{Tangent}}\\\text{functor}\end{matrix}</math> |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 8,907: |
Line 8,907: |
| | | |
| <br> | | <br> |
| + | |
| + | ===Appendix 2. Differential Forms=== |
| + | |
| + | The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables A7 and A8. |
| + | |
| + | Table A7 expands the differential forms that result over a ''logical basis'': |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | |
| + | <math>\{~ \texttt{(}\mathrm{d}x\texttt{)(}\mathrm{d}y\texttt{)}, ~\mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}, ~\texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> |
| + | |} |
| + | |
| + | This set consists of the singular propositions in the first order differential variables, indicating mutually exclusive and exhaustive ''cells'' of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the cell-basis, point-basis, or singular differential basis. In this setting it is frequently convenient to use the following abbreviations: |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | |
| + | <math>\partial x ~=~ \mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}\!</math> and <math>\partial y ~=~ \texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y.\!</math> |
| + | |} |
| + | |
| + | Table A8 expands the differential forms that result over an ''algebraic basis'': |
| + | |
| + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | <math>\{~ 1, ~\mathrm{d}x, ~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> |
| + | |} |
| + | |
| + | This set consists of the ''positive propositions'' in the first order differential variables, indicating overlapping positive regions of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the ''positive differential basis''. |
| + | |
| + | ====Table A7. Differential Forms Expanded on a Logical Basis==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A7.} ~~ \text{Differential Forms Expanded on a Logical Basis}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | <math>\mathrm{D}f~\!</math> |
| + | | <math>\mathrm{d}f~\!</math> |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | style="border-right:none" | <math>\texttt{(~)}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial x |
| + | \\ |
| + | \partial x |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\ |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial x & + & \partial y |
| + | \\ |
| + | \partial x & + & \partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \partial y |
| + | \\ |
| + | \partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} |
| + | \\ |
| + | \texttt{(~} x \texttt{~(} y \texttt{))} |
| + | \\ |
| + | \texttt{((} x \texttt{)~} y \texttt{~)} |
| + | \\ |
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} |
| + | & + & |
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y |
| + | & + & |
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{~} x \texttt{~} ~\partial y |
| + | \\ |
| + | \texttt{~} y \texttt{~} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \\ |
| + | \texttt{(} y \texttt{)} ~\partial x |
| + | & + & |
| + | \texttt{(} x \texttt{)} ~\partial y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | style="border-right:none" | <math>\texttt{((~))}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A8. Differential Forms Expanded on an Algebraic Basis==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A8.} ~~ \text{Differential Forms Expanded on an Algebraic Basis}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | <math>\mathrm{D}f~\!</math> |
| + | | <math>\mathrm{d}f~\!</math> |
| + | |- |
| + | | <math>f_{0}\!</math> |
| + | | style="border-right:none" | <math>\texttt{(~)}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x |
| + | \\ |
| + | \mathrm{d}x |
| + | \end{matrix}\!</math> |
| + | | <math>\begin{matrix} |
| + | \mathrm{d}x |
| + | \\ |
| + | \mathrm{d}x |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\ |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x & + & \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x & + & \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x & + & \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x & + & \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y |
| + | \\ |
| + | \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix} |
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} |
| + | \\ |
| + | \texttt{(~} x \texttt{~(} y \texttt{))} |
| + | \\ |
| + | \texttt{((} x \texttt{)~} y \texttt{~)} |
| + | \\ |
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | style="border-right:none" | <math>\texttt{((~))}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A9. Tangent Proposition as Pointwise Linear Approximation==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A9.} ~~ \text{Tangent Proposition}~ \mathrm{d}f = \text{Pointwise Linear Approximation to the Difference Map}~ \mathrm{D}f\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}f = |
| + | \\[2pt] |
| + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}^2\!f = |
| + | \\[2pt] |
| + | \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\mathrm{d}f|_{x \, y}</math> |
| + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_0\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | <math>\begin{matrix} |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_{15}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A10. Taylor Series Expansion Df = d''f'' + d<sup>2</sup>''f''==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{D}f |
| + | \\ |
| + | = & \mathrm{d}f & + & \mathrm{d}^2\!f |
| + | \\ |
| + | = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\mathrm{d}f|_{x \, y}</math> |
| + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_0\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_{15}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A11. Partial Differentials and Relative Differentials==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math> |
| + | |- style="background:ghostwhite; height:50px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\frac{\partial f}{\partial x}\!</math> |
| + | | <math>\frac{\partial f}{\partial y}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}f = |
| + | \\[2pt] |
| + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\left. \frac{\partial x}{\partial y} \right| f\!</math> |
| + | | <math>\left. \frac{\partial y}{\partial x} \right| f\!</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>\texttt{(~)}\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \\ |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\ |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} |
| + | \\ |
| + | \texttt{(~} x \texttt{~(} y \texttt{))} |
| + | \\ |
| + | \texttt{((} x \texttt{)~} y \texttt{~)} |
| + | \\ |
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} |
| + | \\ |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \\ |
| + | \texttt{(} y \texttt{)} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} x \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>\texttt{((~))}\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A12. Detail of Calculation for the Difference Map==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math> |
| + | |- style="background:ghostwhite" |
| + | | style="width:6%" | |
| + | | style="width:14%; border-left:1px solid black" | <math>f\!</math> |
| + | | style="width:20%; border-left:4px double black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \\[4pt] |
| + | + & f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \\[4pt] |
| + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | + & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \end{array}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{0}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{1}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{2}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{4}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{~~} x \texttt{~(} y \texttt{)~}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{8}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{~~} x \texttt{~~} y \texttt{~~}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{3}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\texttt{(} x \texttt{)}\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & x |
| + | \\[4pt] |
| + | + & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & x |
| + | \\[4pt] |
| + | + & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | + & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | + & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{12}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>x\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | + & x |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} x \texttt{)} |
| + | \\[4pt] |
| + | + & x |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & x |
| + | \\[4pt] |
| + | + & x |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & x |
| + | \\[4pt] |
| + | + & x |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{6}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\texttt{~(} x \texttt{,~} y \texttt{)~}\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{9}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{((} x \texttt{,~} y \texttt{))}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{5}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\texttt{(} y \texttt{)}\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & y |
| + | \\[4pt] |
| + | + & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | + & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & y |
| + | \\[4pt] |
| + | + & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | + & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{10}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>y\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | + & y |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & y |
| + | \\[4pt] |
| + | + & y |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{(} y \texttt{)} |
| + | \\[4pt] |
| + | + & y |
| + | \\[4pt] |
| + | = & 1 |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & y |
| + | \\[4pt] |
| + | + & y |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{7}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\texttt{~(} x \texttt{~~} y \texttt{)~}\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{11}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{~(} x \texttt{~(} y \texttt{))}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{13}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{((} x \texttt{)~} y \texttt{)~}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
| + | \end{matrix}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:1px solid black" | <math>f_{14}\!</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\texttt{((} x \texttt{)(} y \texttt{))}\!</math> |
| + | | style="border-top:1px solid black; border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
| + | \end{matrix}</math> |
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \\[4pt] |
| + | = & 0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-top:4px double black" | <math>f_{15}\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1\!</math> |
| + | | style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Appendix 3. Computational Details=== |
| + | |
| + | ====Operator Maps for the Logical Conjunction ''f''<sub>8</sub>(u, v)==== |
| + | |
| + | =====Computation of ε''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{8}~\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = && f_{8}(u, v) |
| + | \\[4pt] |
| + | & = && uv |
| + | \\[4pt] |
| + | & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & uv \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of E''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.2-i} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{E}f_{8} |
| + | & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \mathrm{d}v) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{8}(\mathrm{d}u, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v) |
| + | \\[4pt] |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[20pt] |
| + | \mathrm{E}f_{8} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | &&& + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | \\[4pt] |
| + | &&&&& + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | &&&&&&& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.2-ii} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{c}} |
| + | \mathrm{E}f_{8} |
| + | & = & (u + \mathrm{d}u) \cdot (v + \mathrm{d}v) |
| + | \\[6pt] |
| + | & = & u \cdot v |
| + | & + & u \cdot \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u |
| + | & + & \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of D''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = && \mathrm{E}f_{8} |
| + | & + & \boldsymbol\varepsilon f_{8} |
| + | \\[4pt] |
| + | & = && f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{8}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & uv |
| + | \\[20pt] |
| + | \mathrm{D}f_{8} |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} |
| + | \\[20pt] |
| + | \mathrm{D}f_{8} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & \boldsymbol\varepsilon f_{8} |
| + | & + & \mathrm{E}f_{8} |
| + | \\[6pt] |
| + | & = & f_{8}(u, v) |
| + | & + & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[6pt] |
| + | & = & uv |
| + | & + & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | & = & 0 |
| + | & + & u \cdot \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u |
| + | & + & \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{D}f_{8} |
| + | & = & 0 |
| + | & + & u \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-iii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 3)}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & \boldsymbol\varepsilon f_{8} ~+~ \mathrm{E}f_{8} |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & ~ u \,\cdot\, v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & ~ u \;\cdot\; v \;\cdot\; \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u ~ \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} ~ v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot\, \mathrm{d}u ~ \mathrm{d}v |
| + | \\[20pt] |
| + | \mathrm{D}f_{8} |
| + | & = & ~ ~ 0 ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & ~ ~ u ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & ~ ~ ~ v ~~ \cdot ~ \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | =====Computation of d''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.4} ~~ \text{Computation of}~ \mathrm{d}f_{8}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of r''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.5} ~~ \text{Computation of}~ \mathrm{r}f_{8}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{r}f_{8} & = & \mathrm{D}f_{8} ~+~ \mathrm{d}f_{8} |
| + | \\[20pt] |
| + | \mathrm{D}f_{8} |
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[20pt] |
| + | \mathrm{r}f_{8} |
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation Summary for Conjunction===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}(u, v) = uv\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = & uv \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{D}f_{8} |
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{r}f_{8} |
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Operator Maps for the Logical Equality ''f''<sub>9</sub>(u, v)==== |
| + | |
| + | =====Computation of ε''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \boldsymbol\varepsilon f_{9} |
| + | & = && f_{9}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{((} u \texttt{,~} v \texttt{))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{9}(1, 1) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{9}(1, 0) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{9}(0, 1) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{9}(0, 0) |
| + | \\[4pt] |
| + | & = && u v & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of E''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.2} ~~ \text{Computation of}~ \mathrm{E}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{E}f_{9} |
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{E}f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of D''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = && \mathrm{E}f_{9} |
| + | & + & \boldsymbol\varepsilon f_{9} |
| + | \\[4pt] |
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{9}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = & 0 \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & 1 \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & 1 \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of d''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.4} ~~ \text{Computation of}~ \mathrm{d}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of r''f''<sub>9</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.5} ~~ \text{Computation of}~ \mathrm{r}f_{9}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{r}f_{9} & = & \mathrm{D}f_{9} ~+~ \mathrm{d}f_{9} |
| + | \\[20pt] |
| + | \mathrm{D}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[20pt] |
| + | \mathrm{r}f_{9} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation Summary for Equality===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F9.6} ~~ \text{Computation Summary for}~ f_{9}(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f_{9} |
| + | & = & uv \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
| + | \\[6pt] |
| + | \mathrm{E}f_{9} |
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{D}f_{9} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}f_{9} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{r}f_{9} |
| + | & = & uv \cdot 0 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Operator Maps for the Logical Implication ''f''<sub>11</sub>(u, v)==== |
| + | |
| + | =====Computation of ε''f''<sub>11</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{11}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \boldsymbol\varepsilon f_{11} |
| + | & = && f_{11}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{(} u \texttt{(} v \texttt{))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{11}(1, 1) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{11}(1, 0) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{11}(0, 1) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{11}(0, 0) |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{11} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of E''f''<sub>11</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.2} ~~ \text{Computation of}~ \mathrm{E}f_{11}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{E}f_{11} |
| + | & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = && |
| + | \texttt{(} |
| + | \\ |
| + | &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} |
| + | \\ |
| + | &&& \texttt{(} |
| + | \\ |
| + | &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\ |
| + | &&& \texttt{))} |
| + | \\[4pt] |
| + | & = && |
| + | u v |
| + | \!\cdot\! |
| + | \texttt{((} \mathrm{d}u \texttt{)((} \mathrm{d}v \texttt{)))} |
| + | & + & |
| + | u \texttt{(} v \texttt{)} |
| + | \!\cdot\! |
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | \texttt{(} u \texttt{)} v |
| + | \!\cdot\! |
| + | \texttt{(} \mathrm{d}u \texttt{((} \mathrm{d}v \texttt{)))} |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \!\cdot\! |
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | \\[4pt] |
| + | & = && |
| + | u v |
| + | \!\cdot\! |
| + | \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | u \texttt{(} v \texttt{)} |
| + | \!\cdot\! |
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | \texttt{(} u \texttt{)} v |
| + | \!\cdot\! |
| + | \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \!\cdot\! |
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{E}f_{11} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of D''f''<sub>11</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{11} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{D}f_{11} |
| + | & = && \mathrm{E}f_{11} |
| + | & + & \boldsymbol\varepsilon f_{11} |
| + | \\[4pt] |
| + | & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{11}(u, v) |
| + | \\[4pt] |
| + | & = && |
| + | \texttt{(} \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} |
| + | \texttt{(} \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \texttt{))} |
| + | & + & |
| + | \texttt{(} u \texttt{(} v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{D}f_{11} |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} |
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v |
| + | & + & 0 |
| + | \\[20pt] |
| + | \mathrm{D}f_{11} |
| + | & = && u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{11} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{9}{l}} |
| + | \mathrm{D}f_{11} |
| + | & = & \boldsymbol\varepsilon f_{11} ~+~ \mathrm{E}f_{11} |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{11} |
| + | & = & u v \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
| + | \\[6pt] |
| + | \mathrm{E}f_{11} |
| + | & = & |
| + | u v |
| + | \cdot |
| + | \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | u \texttt{(} v \texttt{)} |
| + | \cdot |
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | \texttt{(} u \texttt{)} v |
| + | \cdot |
| + | \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \cdot |
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{D}f_{11} |
| + | & = & |
| + | u v |
| + | \cdot |
| + | \texttt{~(} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{~} |
| + | & + & |
| + | u \texttt{(} v \texttt{)} |
| + | \cdot |
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | \texttt{(} u \texttt{)} v |
| + | \cdot |
| + | \texttt{~} \mathrm{d}u ~ \mathrm{d}v \texttt{~} |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \cdot |
| + | \texttt{~} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of d''f''<sub>11</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.4} ~~ \text{Computation of}~ \mathrm{d}f_{11}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{11} |
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{11} |
| + | & = & u v \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of r''f''<sub>11</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.5} ~~ \text{Computation of}~ \mathrm{r}f_{11}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{r}f_{11} & = & \mathrm{D}f_{11} ~+~ \mathrm{d}f_{11} |
| + | \\[20pt] |
| + | \mathrm{D}f_{11} |
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}f_{11} |
| + | & = & u v \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u |
| + | \\[20pt] |
| + | \mathrm{r}f_{11} |
| + | & = & u v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation Summary for Implication===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F11.6} ~~ \text{Computation Summary for}~ f_{11}(u, v) = \texttt{(} u \texttt{(} v \texttt{))}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f_{11} |
| + | & = & u v \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
| + | \\[6pt] |
| + | \mathrm{E}f_{11} |
| + | & = & u v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{D}f_{11} |
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}f_{11} |
| + | & = & u v \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u |
| + | \\[6pt] |
| + | \mathrm{r}f_{11} |
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Operator Maps for the Logical Disjunction ''f''<sub>14</sub>(u, v)==== |
| + | |
| + | =====Computation of ε''f''<sub>14</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{14}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \boldsymbol\varepsilon f_{14} |
| + | & = && f_{14}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{((} u \texttt{)(} v \texttt{))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{14}(1, 1) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{14}(1, 0) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{14}(0, 1) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{14}(0, 0) |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } |
| + | & + & 0 |
| + | \\[20pt] |
| + | \boldsymbol\varepsilon f_{14} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of E''f''<sub>14</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.2} ~~ \text{Computation of}~ \mathrm{E}f_{14}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{E}f_{14} |
| + | & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = && |
| + | \texttt{((} |
| + | \\ |
| + | &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} |
| + | \\ |
| + | &&& \texttt{)(} |
| + | \\ |
| + | &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\ |
| + | &&& \texttt{))} |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) |
| + | \\[4pt] |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{E}f_{14} |
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of D''f''<sub>14</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{14} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{10}{l}} |
| + | \mathrm{D}f_{14} |
| + | & = && \mathrm{E}f_{14} |
| + | & + & \boldsymbol\varepsilon f_{14} |
| + | \\[4pt] |
| + | & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{14}(u, v) |
| + | \\[4pt] |
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{))((} v \texttt{,} \mathrm{d}v \texttt{)))} |
| + | & + & \texttt{((} u \texttt{)(} v \texttt{))} |
| + | \\[20pt] |
| + | \mathrm{D}f_{14} |
| + | & = && 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & 0 |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} |
| + | \\[4pt] |
| + | && + & 0 |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} |
| + | \\[4pt] |
| + | && + & uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v |
| + | & + & 0 |
| + | & + & 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} |
| + | \\[20pt] |
| + | \mathrm{D}f_{14} |
| + | & = && uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{14} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{14} |
| + | & = & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of d''f''<sub>14</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.4} ~~ \text{Computation of}~ \mathrm{d}f_{14}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{14} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{14} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of r''f''<sub>14</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.5} ~~ \text{Computation of}~ \mathrm{r}f_{14}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{r}f_{14} & = & \mathrm{D}f_{14} ~+~ \mathrm{d}f_{14} |
| + | \\[20pt] |
| + | \mathrm{D}f_{14} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{d}f_{14} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[20pt] |
| + | \mathrm{r}f_{14} |
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation Summary for Disjunction===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.6} ~~ \text{Computation Summary for}~ f_{14}(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f_{14} |
| + | & = & uv \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 1 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{E}f_{14} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{D}f_{14} |
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{d}f_{14} |
| + | & = & uv \cdot 0 |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{r}f_{14} |
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Appendix 4. Source Materials=== |
| + | |
| + | ===Appendix 5. Various Definitions of the Tangent Vector=== |
| | | |
| ==References== | | ==References== |