Line 15: |
Line 15: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | | + | | The first kind of propositional expression is a parenthesized sequence of propositional expressions, written as <math>\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)}\!</math> and read to say that exactly one of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> is false, in other words, that their [[minimal negation]] is true. A clause of this form maps into a PARC structure called a ''lobe'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> as shown below. |
− | <p>The first kind of propositional expression is a parenthesized sequence of propositional expressions, written as <math>\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)}\!</math> and read to say that exactly one of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> is false, in other words, that their [[minimal negation]] is true. A clause of this form maps into a PARC structure called a ''lobe'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> as shown below.<p>
| |
| |} | | |} |
| | | |
Line 24: |
Line 23: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | | + | | The second kind of propositional expression is a concatenated sequence of propositional expressions, written as <math>e_1\ e_2\ \ldots\ e_{k-1}\ e_k\!</math> and read to say that all of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> are true, in other words, that their [[logical conjunction]] is true. A clause of this form maps into a PARC structure called a ''node'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> as shown below. |
− | <p>The second kind of propositional expression is a concatenated sequence of propositional expressions, written as <math>e_1\ e_2\ \ldots\ e_{k-1}\ e_k\!</math> and read to say that all of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> are true, in other words, that their [[logical conjunction]] is true. A clause of this form maps into a PARC structure called a ''node'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> as shown below.</p>
| |
| |} | | |} |
| | | |
Line 38: |
Line 36: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ style="height:30px" | <math>\text{Table 1.} ~~ \text{Syntax and Semantics of a Calculus for Propositional Logic}\!</math> | + | |+ <math>\text{Table 1.}~~\text{Syntax and Semantics of a Calculus for Propositional Logic}\!</math> |
− | |- style="height:40px; background:ghostwhite" | + | |- style="background:#f0f0ff" |
| + | | <math>\text{Graph}\!</math> |
| | <math>\text{Expression}~\!</math> | | | <math>\text{Expression}~\!</math> |
| | <math>\text{Interpretation}\!</math> | | | <math>\text{Interpretation}\!</math> |
| | <math>\text{Other Notations}\!</math> | | | <math>\text{Other Notations}\!</math> |
| |- | | |- |
− | | | + | | height="100px" | [[Image:Rooted Node.jpg|20px]] |
− | | <math>\text{True}\!</math> | + | | <math>~\!</math> |
| + | | <math>\mathrm{true}\!</math> |
| | <math>1\!</math> | | | <math>1\!</math> |
| |- | | |- |
| + | | height="100px" | [[Image:Rooted Edge.jpg|20px]] |
| | <math>\texttt{(~)}\!</math> | | | <math>\texttt{(~)}\!</math> |
− | | <math>\text{False}\!</math> | + | | <math>\mathrm{false}\!</math> |
| | <math>0\!</math> | | | <math>0\!</math> |
| |- | | |- |
− | | <math>x\!</math> | + | | height="100px" | [[Image:Cactus A Big.jpg|20px]] |
− | | <math>x\!</math> | + | | <math>a\!</math> |
− | | <math>x\!</math> | + | | <math>a\!</math> |
| + | | <math>a\!</math> |
| |- | | |- |
− | | <math>\texttt{(} x \texttt{)}\!</math> | + | | height="120px" | [[Image:Cactus (A) Big.jpg|20px]] |
− | | <math>\text{Not}~ x\!</math> | + | | <math>\texttt{(} a \texttt{)}\!</math> |
− | | | + | | <math>\mathrm{not}~ a\!</math> |
− | <math>\begin{matrix} | + | | <math>\lnot a \quad \bar{a} \quad \tilde{a} \quad a^\prime~\!</math> |
− | x'
| |
− | \\ | |
− | \tilde{x} | |
− | \\ | |
− | \lnot x
| |
− | \end{matrix}\!</math>
| |
| |- | | |- |
− | | <math>x~y~z\!</math> | + | | height="100px" | [[Image:Cactus ABC Big.jpg|50px]] |
− | | <math>x ~\text{and}~ y ~\text{and}~ z\!</math> | + | | <math>a ~ b ~ c\!</math> |
− | | <math>x \land y \land z\!</math> | + | | <math>a ~\mathrm{and}~ b ~\mathrm{and}~ c\!</math> |
| + | | <math>a \land b \land c\!</math> |
| |- | | |- |
− | | <math>\texttt{((} x \texttt{)(} y \texttt{)(} z \texttt{))}\!</math> | + | | height="160px" | [[Image:Cactus ((A)(B)(C)) Big.jpg|65px]] |
− | | <math>x ~\text{or}~ y ~\text{or}~ z\!</math> | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}\!</math> |
− | | <math>x \lor y \lor z\!</math> | + | | <math>a ~\mathrm{or}~ b ~\mathrm{or}~ c\!</math> |
| + | | <math>a \lor b \lor c\!</math> |
| |- | | |- |
− | | <math>\texttt{(} x ~ \texttt{(} y \texttt{))}\!</math> | + | | height="120px" | [[Image:Cactus (A(B)) Big.jpg|60px]] |
| + | | <math>\texttt{(} a \texttt{(} b \texttt{))}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x ~\text{implies}~ y
| + | a ~\mathrm{implies}~ b |
− | \\ | + | \\[6pt] |
− | \mathrm{If}~ x ~\text{then}~ y | + | \mathrm{if}~ a ~\mathrm{then}~ b |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
− | | <math>x \Rightarrow y\!</math> | + | | <math>a \Rightarrow b\!</math> |
| |- | | |- |
− | | <math>\texttt{(} x \texttt{,} y \texttt{)}\!</math> | + | | height="120px" | [[Image:Cactus (A,B) Big ISW.jpg|65px]] |
| + | | <math>\texttt{(} a \texttt{,} b \texttt{)}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x ~\text{not equal to}~ y
| + | a ~\mathrm{not~equal~to}~ b |
− | \\ | + | \\[6pt] |
− | x ~\text{exclusive or}~ y
| + | a ~\mathrm{exclusive~or}~ b |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x \ne y
| + | a \neq b |
− | \\ | + | \\[6pt] |
− | x + y
| + | a + b |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| |- | | |- |
− | | <math>\texttt{((} x \texttt{,} y \texttt{))}\!</math> | + | | height="160px" | [[Image:Cactus ((A,B)) Big.jpg|65px]] |
| + | | <math>\texttt{((} a \texttt{,} b \texttt{))}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x ~\text{is equal to}~ y
| + | a ~\mathrm{is~equal~to}~ b |
− | \\ | + | \\[6pt] |
− | x ~\text{if and only if}~ y
| + | a ~\mathrm{if~and~only~if}~ b |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x = y
| + | a = b |
− | \\ | + | \\[6pt] |
− | x \Leftrightarrow y
| + | a \Leftrightarrow b |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| |- | | |- |
− | | <math>\texttt{(} x \texttt{,} y \texttt{,} z \texttt{)}\!</math> | + | | height="120px" | [[Image:Cactus (A,B,C) Big.jpg|65px]] |
| + | | <math>\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{Just one of} | + | \mathrm{just~one~of} |
| \\ | | \\ |
− | x, y, z
| + | a, b, c |
| \\ | | \\ |
− | \text{is false}. | + | \mathrm{is~false}. |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x'y~z~ & \lor
| + | & \bar{a} ~ b ~ c |
| \\ | | \\ |
− | x~y'z~ & \lor
| + | \lor & a ~ \bar{b} ~ c |
| \\ | | \\ |
− | x~y~z' &
| + | \lor & a ~ b ~ \bar{c} |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| |- | | |- |
− | | <math>\texttt{((} x \texttt{),(} y \texttt{),(} z \texttt{))}\!</math> | + | | height="160px" | [[Image:Cactus ((A),(B),(C)) Big.jpg|65px]] |
| + | | <math>\texttt{((} a \texttt{),(} b \texttt{),(} c \texttt{))}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{Just one of} | + | \mathrm{just~one~of} |
| \\ | | \\ |
− | x, y, z
| + | a, b, c |
| \\ | | \\ |
− | \text{is true}. | + | \mathrm{is~true}. |
| + | \\[6pt] |
| + | \mathrm{partition~all} |
| \\ | | \\ |
− | &
| + | \mathrm{into}~ a, b, c. |
− | \\
| + | \end{matrix}\!</math> |
− | \text{Partition all}
| |
− | \\
| |
− | \text{into}~ x, y, z. | |
− | \end{matrix}</math> | |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | x~y'z' & \lor
| + | & a ~ \bar{b} ~ \bar{c} |
| \\ | | \\ |
− | x'y~z' & \lor
| + | \lor & \bar{a} ~ b ~ \bar{c} |
| \\ | | \\ |
− | x'y'z~ &
| + | \lor & \bar{a} ~ \bar{b} ~ c |
− | \end{matrix}</math> | + | \end{matrix}\!</math> |
| |- | | |- |
| + | | height="160px" | [[Image:Cactus (A,(B,C)) Big.jpg|90px]] |
| + | | <math>\texttt{(} a \texttt{,(} b \texttt{,} c \texttt{))}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{((} x \texttt{,} y \texttt{),} z \texttt{)} | + | \mathrm{oddly~many~of} |
| \\ | | \\ |
− | &
| + | a, b, c |
| \\ | | \\ |
− | \texttt{(} x \texttt{,(} y \texttt{,} z \texttt{))} | + | \mathrm{are~true}. |
| \end{matrix}\!</math> | | \end{matrix}\!</math> |
| | | | | |
− | <math>\begin{matrix}
| + | <p><math>a + b + c\!</math></p> |
− | \text{Oddly many of}
| |
− | \\
| |
− | x, y, z
| |
− | \\
| |
− | \text{are true}.
| |
− | \end{matrix}\!</math>
| |
− | |
| |
− | <p><math>x + y + z\!</math></p> | |
| <br> | | <br> |
| <p><math>\begin{matrix} | | <p><math>\begin{matrix} |
− | x~y~z~ & \lor
| + | & a ~ b ~ c |
| \\ | | \\ |
− | x~y'z' & \lor
| + | \lor & a ~ \bar{b} ~ \bar{c} |
| \\ | | \\ |
− | x'y~z' & \lor
| + | \lor & \bar{a} ~ b ~ \bar{c} |
| \\ | | \\ |
− | x'y'z~ &
| + | \lor & \bar{a} ~ \bar{b} ~ c |
| \end{matrix}\!</math></p> | | \end{matrix}\!</math></p> |
| |- | | |- |
− | | <math>\texttt{(} w \texttt{,(} x \texttt{),(} y \texttt{),(} z \texttt{))}\!</math> | + | | height="160px" | [[Image:Cactus (X,(A),(B),(C)) Big.jpg|90px]] |
| + | | <math>\texttt{(} x \texttt{,(} a \texttt{),(} b \texttt{),(} c \texttt{))}\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \text{Partition}~ w | + | \mathrm{partition}~ x |
| \\ | | \\ |
− | \text{into}~ x, y, z. | + | \mathrm{into}~ a, b, c. |
| + | \\[6pt] |
| + | \mathrm{genus}~ x ~\mathrm{comprises} |
| \\ | | \\ |
− | &
| + | \mathrm{species}~ a, b, c. |
− | \\ | + | \end{matrix}\!</math> |
− | \text{Genus}~ w ~\text{comprises}
| |
− | \\
| |
− | \text{species}~ x, y, z.
| |
− | \end{matrix}</math> | |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | w'x'y'z' & \lor
| + | & \bar{x} ~ \bar{a} ~ \bar{b} ~ \bar{c} |
| \\ | | \\ |
− | w~x~y'z' & \lor
| + | \lor & x ~ a ~ \bar{b} ~ \bar{c} |
| \\ | | \\ |
− | w~x'y~z' & \lor
| + | \lor & x ~ \bar{a} ~ b ~ \bar{c} |
| \\ | | \\ |
− | w~x'y'z~ &
| + | \lor & x ~ \bar{a} ~ \bar{b} ~ c |
− | \end{matrix}</math> | + | \end{matrix}~\!</math> |
| |} | | |} |
| | | |
Line 778: |
Line 772: |
| (p)~q~ | | (p)~q~ |
| \\[4pt] | | \\[4pt] |
− | (p)[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) | + | (p)~ ~ |
| \\[4pt] | | \\[4pt] |
| ~p~(q) | | ~p~(q) |
| \\[4pt] | | \\[4pt] |
− | [[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])(q)
| + | ~ ~(q) |
| \\[4pt] | | \\[4pt] |
| (p,~q) | | (p,~q) |
Line 885: |
Line 879: |
| ((p,~q)) | | ((p,~q)) |
| \\[4pt] | | \\[4pt] |
− | 16:16, 29 November 2015 (UTC)q~~
| + | ~ ~ ~q~~ |
| \\[4pt] | | \\[4pt] |
| ~(p~(q)) | | ~(p~(q)) |
| \\[4pt] | | \\[4pt] |
− | ~~p16:16, 29 November 2015 (UTC) | + | ~~p~ ~ ~ |
| \\[4pt] | | \\[4pt] |
| ((p)~q)~ | | ((p)~q)~ |
Line 2,815: |
Line 2,809: |
| |} | | |} |
| | | |
− | For example, given the set <math>X = \{ a, b, c \},\!</math> suppose that we have the 2-adic relative term <math>\mathit{m} = {}^{\backprime\backprime}\, \text{marker for}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 16:16, 29 November 2015 (UTC)}\, {}^{\prime\prime}\!</math> and the associated 2-adic relation <math>M \subseteq X \times X,\!</math> the general pattern of whose common structure is represented by the following matrix: | + | For example, given the set <math>X = \{ a, b, c \},\!</math> suppose that we have the 2-adic relative term <math>\mathit{m} = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~ ~ ~}\, {}^{\prime\prime}\!</math> and the associated 2-adic relation <math>M \subseteq X \times X,\!</math> the general pattern of whose common structure is represented by the following matrix: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 2,912: |
Line 2,906: |
| |} | | |} |
| | | |
− | Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c\!</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 16:16, 29 November 2015 (UTC)}\, {}^{\prime\prime}\!</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a\!</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation. | + | Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c\!</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~ ~ ~}\, {}^{\prime\prime}\!</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a\!</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation. |
| | | |
| Up to this point, we are still reading the elementary relatives of the form <math>i\!:\!j\!</math> in the way that Peirce read them in logical contexts: <math>i\!</math> is the relate, <math>j\!</math> is the correlate, and in our current example <math>i\!:\!j,\!</math> or more exactly, <math>m_{ij} = 1,\!</math> is taken to say that <math>i\!</math> is a marker for <math>j.\!</math> This is the mode of reading that we call “multiplying on the left”. | | Up to this point, we are still reading the elementary relatives of the form <math>i\!:\!j\!</math> in the way that Peirce read them in logical contexts: <math>i\!</math> is the relate, <math>j\!</math> is the correlate, and in our current example <math>i\!:\!j,\!</math> or more exactly, <math>m_{ij} = 1,\!</math> is taken to say that <math>i\!</math> is a marker for <math>j.\!</math> This is the mode of reading that we call “multiplying on the left”. |