Line 789: |
Line 789: |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | | | | |
− | <p>The relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}</math><p> | + | <p>The relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}</math></p> |
| | | |
| <p>can be reached by removing the absolute term <math>^{\backprime\backprime}\, \text{Emilia}\, ^{\prime\prime}</math></p> | | <p>can be reached by removing the absolute term <math>^{\backprime\backprime}\, \text{Emilia}\, ^{\prime\prime}</math></p> |
Line 795: |
Line 795: |
| <p>from the absolute term <math>^{\backprime\backprime}\, \text{lover of Emilia}\, ^{\prime\prime}.</math></p> | | <p>from the absolute term <math>^{\backprime\backprime}\, \text{lover of Emilia}\, ^{\prime\prime}.</math></p> |
| | | |
− | <p><math>\operatorname{Iago}</math> is a lover of <math>\operatorname{Emilia},</math> so the relate-correlate pair <math>\operatorname{I}:\operatorname{E}</math><p> | + | <p><math>\operatorname{Iago}</math> is a lover of <math>\operatorname{Emilia},</math> so the relate-correlate pair <math>\operatorname{I}:\operatorname{E}</math></p> |
| | | |
| <p>lies in the 2-adic relation associated with the relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> | | <p>lies in the 2-adic relation associated with the relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> |
Line 808: |
Line 808: |
| <p><math>\operatorname{Iago}</math> is a betrayer to <math>\operatorname{Othello}</math> of <math>\operatorname{Desdemona},</math> so the relate-correlate-correlate triple <math>\operatorname{I}:\operatorname{O}:\operatorname{D}</math></p> | | <p><math>\operatorname{Iago}</math> is a betrayer to <math>\operatorname{Othello}</math> of <math>\operatorname{Desdemona},</math> so the relate-correlate-correlate triple <math>\operatorname{I}:\operatorname{O}:\operatorname{D}</math></p> |
| | | |
− | <p>lies in the 3-adic relation assciated with the relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> | + | <p>lies in the 3-adic relation assciated with the relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}.\!</math></p> |
| |- | | |- |
| | | | | |
Line 817: |
Line 817: |
| <p>from the absolute term <math>^{\backprime\backprime}\, \text{winner over of Othello to Iago from Cassio}\, ^{\prime\prime}.</math></p> | | <p>from the absolute term <math>^{\backprime\backprime}\, \text{winner over of Othello to Iago from Cassio}\, ^{\prime\prime}.</math></p> |
| | | |
− | <p><math>\operatorname{Iago}</math> is a winner over of <math>\operatorname{Othello}</math> to <math>\operatorname{Iago}</math> from <math>\operatorname{Cassio},</math> so the elementary relative term <math>\operatorname{I}:\operatorname{O}:\operatorname{I}:\operatorname{C}</math></p> | + | <p><math>\operatorname{Iago}</math> is a winner over of <math>\operatorname{Othello}</math> to <math>\operatorname{Iago}</math> from <math>\operatorname{Cassio},\!</math> so the elementary relative term <math>\operatorname{I}:\operatorname{O}:\operatorname{I}:\operatorname{C}</math></p> |
| | | |
| <p>lies in the 4-adic relation associated with the relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> | | <p>lies in the 4-adic relation associated with the relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> |