Changes

Line 838: Line 838:     
<blockquote>
 
<blockquote>
<p>The problem is concretely about Boolean functions $latex {f}$ of $latex {k}$ variables, and seems not to involve prime numbers at all.  For any subset $latex {S}$ of the coordinates, the corresponding Fourier coefficient is given by:</p>
+
<p>The problem is concretely about Boolean functions <math>f\!</math> of <math>k\!</math> variables, and seems not to involve prime numbers at all.  For any subset <math>S\!</math> of the coordinates, the corresponding Fourier coefficient is given by:</p>
   −
<p align="center">
+
<p align="center"><math>\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math></p>
<math>\displaystyle \hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math>
  −
</p>
     −
<p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p>
+
<p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\textstyle \sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p>
 
</blockquote>
 
</blockquote>
  
12,080

edits