Changes

no edit summary
Line 1: Line 1:  +
<div class="nonumtoc">__TOC__</div>
 +
 +
==Tables==
 +
 +
===Boolean Functions and Propositional Calculus===
 +
 +
* Examples of LaTeX tabular markup from [http://inquiryintoinquiry.com/tables/ Inquiry Into Inquiry &bull; Tables]
 +
 +
<pre>
 +
$latex
 +
\begin{tabular}{|*{7}{c|}}
 +
\multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\
 +
\hline
 +
\(L_1\)&amp;\(L_2\)&amp;&amp;\(L_3\)&amp;\(L_4\)&amp;\(L_5\)&amp;\(L_6\) \\
 +
\hline
 +
&amp;&amp;\(x=\)&amp;1 1 0 0&amp;&amp;&amp; \\
 +
&amp;&amp;\(y=\)&amp;1 0 1 0&amp;&amp;&amp; \\
 +
\hline
 +
\(f_{0}\)&amp;
 +
\(f_{0000}\)&amp;&amp;
 +
0 0 0 0&amp;
 +
\((~)\)&amp;
 +
false&amp;
 +
\(0\)
 +
\\
 +
\(f_{1}\)&amp;
 +
\(f_{0001}\)&amp;&amp;
 +
0 0 0 1&amp;
 +
\((x)(y)\)&amp;
 +
neither \(x\) nor \(y\)&amp;
 +
\(\lnot x \land \lnot y\)
 +
\\
 +
\(f_{2}\)&amp;
 +
\(f_{0010}\)&amp;&amp;
 +
0 0 1 0&amp;
 +
\((x)~y~\)&amp;
 +
\(y\) without \(x\)&amp;
 +
\(\lnot x \land y\)
 +
\\
 +
\(f_{3}\)&amp;
 +
\(f_{0011}\)&amp;&amp;
 +
0 0 1 1&amp;
 +
\((x)\)&amp;
 +
not \(x\)&amp;
 +
\(\lnot x\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(f_{0100}\)&amp;&amp;
 +
0 1 0 0&amp;
 +
\(~x~(y)\)&amp;
 +
\(x\) without \(y\)&amp;
 +
\(x \land \lnot y\)
 +
\\
 +
\(f_{5}\)&amp;
 +
\(f_{0101}\)&amp;&amp;
 +
0 1 0 1&amp;
 +
\((y)\)&amp;
 +
not \(y\)&amp;
 +
\(\lnot y\)
 +
\\
 +
\(f_{6}\)&amp;
 +
\(f_{0110}\)&amp;&amp;
 +
0 1 1 0&amp;
 +
\((x,~y)\)&amp;
 +
\(x\) not equal to \(y\)&amp;
 +
\(x \ne y\)
 +
\\
 +
\(f_{7}\)&amp;
 +
\(f_{0111}\)&amp;&amp;
 +
0 1 1 1&amp;
 +
\((x~~y)\)&amp;
 +
not both \(x\) and \(y\)&amp;
 +
\(\lnot x \lor \lnot y\)
 +
\\
 +
\hline
 +
\(f_{8}\)&amp;
 +
\(f_{1000}\)&amp;&amp;
 +
1 0 0 0&amp;
 +
\(~x~~y~\)&amp;
 +
\(x\) and \(y\)&amp;
 +
\(x \land y\)
 +
\\
 +
\(f_{9}\)&amp;
 +
\(f_{1001}\)&amp;&amp;
 +
1 0 0 1&amp;
 +
\(((x,~y))\)&amp;
 +
\(x\) equal to \(y\)&amp;
 +
\(x = y\)
 +
\\
 +
\(f_{10}\)&amp;
 +
\(f_{1010}\)&amp;&amp;
 +
1 0 1 0&amp;
 +
\(y\)&amp;
 +
\(y\)&amp;
 +
\(y\)
 +
\\
 +
\(f_{11}\)&amp;
 +
\(f_{1011}\)&amp;&amp;
 +
1 0 1 1&amp;
 +
\((~x~(y))\)&amp;
 +
not \(x\) without \(y\)&amp;
 +
\(x \Rightarrow y\)
 +
\\
 +
\(f_{12}\)&amp;
 +
\(f_{1100}\)&amp;&amp;
 +
1 1 0 0&amp;
 +
\(x\)&amp;
 +
\(x\)&amp;
 +
\(x\)
 +
\\
 +
\(f_{13}\)&amp;
 +
\(f_{1101}\)&amp;&amp;
 +
1 1 0 1&amp;
 +
\(((x)~y~)\)&amp;
 +
not \(y\) without \(x\)&amp;
 +
\(x \Leftarrow y\)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(f_{1110}\)&amp;&amp;
 +
1 1 1 0&amp;
 +
\(((x)(y))\)&amp;
 +
\(x\) or \(y\)&amp;
 +
\(x \lor y\)
 +
\\
 +
\(f_{15}\)&amp;
 +
\(f_{1111}\)&amp;&amp;
 +
1 1 1 1&amp;
 +
\(((~))\)&amp;
 +
true&amp;
 +
\(1\)
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
</pre>
 +
 +
<pre>
 +
$latex
 +
\begin{tabular}{|*{7}{c|}}
 +
\multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\
 +
\hline
 +
\(L_1\)&amp;\(L_2\)&amp;&amp;\(L_3\)&amp;\(L_4\)&amp;\(L_5\)&amp;\(L_6\) \\
 +
\hline
 +
&amp;&amp;\(x =\)&amp;1 1 0 0&amp;&amp;&amp; \\
 +
&amp;&amp;\(y =\)&amp;1 0 1 0&amp;&amp;&amp; \\
 +
\hline
 +
\(f_{0}\)&amp;
 +
\(f_{0000}\)&amp;&amp;
 +
0 0 0 0&amp;
 +
\((~)\)&amp;
 +
false&amp;
 +
\(0\)
 +
\\
 +
\hline
 +
\(f_{1}\)&amp;
 +
\(f_{0001}\)&amp;&amp;
 +
0 0 0 1&amp;
 +
\((x)(y)\)&amp;
 +
neither \(x\) nor \(y\)&amp;
 +
\(\lnot x \land \lnot y\)
 +
\\
 +
\(f_{2}\)&amp;
 +
\(f_{0010}\)&amp;&amp;
 +
0 0 1 0&amp;
 +
\((x)~y~\)&amp;
 +
\(y\) without \(x\)&amp;
 +
\(\lnot x \land y\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(f_{0100}\)&amp;&amp;
 +
0 1 0 0&amp;
 +
\(~x~(y)\)&amp;
 +
\(x\) without \(y\)&amp;
 +
\(x \land \lnot y\)
 +
\\
 +
\(f_{8}\)&amp;
 +
\(f_{1000}\)&amp;&amp;
 +
1 0 0 0&amp;
 +
\(~x~~y~\)&amp;
 +
\(x\) and \(y\)&amp;
 +
\(x \land y\)
 +
\\
 +
\hline
 +
\(f_{3}\)&amp;
 +
\(f_{0011}\)&amp;&amp;
 +
0 0 1 1&amp;
 +
\((x)\)&amp;
 +
not \(x\)&amp;
 +
\(\lnot x\)
 +
\\
 +
\(f_{12}\)&amp;
 +
\(f_{1100}\)&amp;&amp;
 +
1 1 0 0&amp;
 +
\(x\)&amp;
 +
\(x\)&amp;
 +
\(x\)
 +
\\
 +
\hline
 +
\(f_{6}\)&amp;
 +
\(f_{0110}\)&amp;&amp;
 +
0 1 1 0&amp;
 +
\((x,~y)\)&amp;
 +
\(x\) not equal to \(y\)&amp;
 +
\(x \ne y\)
 +
\\
 +
\(f_{9}\)&amp;
 +
\(f_{1001}\)&amp;&amp;
 +
1 0 0 1&amp;
 +
\(((x,~y))\)&amp;
 +
\(x\) equal to \(y\)&amp;
 +
\(x = y\)
 +
\\
 +
\hline
 +
\(f_{5}\)&amp;
 +
\(f_{0101}\)&amp;&amp;
 +
0 1 0 1&amp;
 +
\((y)\)&amp;
 +
not \(y\)&amp;
 +
\(\lnot y\)
 +
\\
 +
\(f_{10}\)&amp;
 +
\(f_{1010}\)&amp;&amp;
 +
1 0 1 0&amp;
 +
\(y\)&amp;
 +
\(y\)&amp;
 +
\(y\)
 +
\\
 +
\hline
 +
\(f_{7}\)&amp;
 +
\(f_{0111}\)&amp;&amp;
 +
0 1 1 1&amp;
 +
\((~x~~y~)\)&amp;
 +
not both \(x\) and \(y\)&amp;
 +
\(\lnot x \lor \lnot y\)
 +
\\
 +
\(f_{11}\)&amp;
 +
\(f_{1011}\)&amp;&amp;
 +
1 0 1 1&amp;
 +
\((~x~(y))\)&amp;
 +
not \(x\) without \(y\)&amp;
 +
\(x \Rightarrow y\)
 +
\\
 +
\(f_{13}\)&amp;
 +
\(f_{1101}\)&amp;&amp;
 +
1 1 0 1&amp;
 +
\(((x)~y~)\)&amp;
 +
not \(y\) without \(x\)&amp;
 +
\(x \Leftarrow y\)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(f_{1110}\)&amp;&amp;
 +
1 1 1 0&amp;
 +
\(((x)(y))\)&amp;
 +
\(x\) or \(y\)&amp;
 +
\(x \lor y\)
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
\(f_{1111}\)&amp;&amp;
 +
1 1 1 1&amp;
 +
\(((~))\)&amp;
 +
true&amp;
 +
\(1\)
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
</pre>
 +
 +
<pre>
 +
$latex
 +
\begin{tabular}{|c|c||c|c|c|c|}
 +
\multicolumn{6}{c}{Table A3. \(\mathrm{E}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\
 +
\hline
 +
&amp;
 +
\(~~~~~~~~ f ~~~~~~~~\)&amp;
 +
\(~~~~\mathrm{T}_{11}f~~~~\)&amp;
 +
\(~~~~\mathrm{T}_{10}f~~~~\)&amp;
 +
\(~~~~\mathrm{T}_{01}f~~~~\)&amp;
 +
\(~~~~\mathrm{T}_{00}f~~~~\)
 +
\\
 +
&amp;&amp;
 +
\(\mathrm{E}f|_{~\mathrm{d}x ~\mathrm{d}y~}~\)&amp;
 +
\(\mathrm{E}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)&amp;
 +
\(\mathrm{E}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)&amp;
 +
\(\mathrm{E}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\)
 +
\\
 +
\hline\hline
 +
\(f_{0}\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)&amp;
 +
\(0\)
 +
\\
 +
\hline
 +
\(f_{1}\)&amp;
 +
\((x)(y)\)&amp;
 +
\(~x~~y~\)&amp;
 +
\(~x~(y)\)&amp;
 +
\((x)~y~\)&amp;
 +
\((x)(y)\)
 +
\\
 +
\(f_{2}\)&amp;
 +
\((x)~y~\)&amp;
 +
\(~x~(y)\)&amp;
 +
\(~x~~y~\)&amp;
 +
\((x)(y)\)&amp;
 +
\((x)~y~\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(~x~(y)\)&amp;
 +
\((x)~y~\)&amp;
 +
\((x)(y)\)&amp;
 +
\(~x~~y~\)&amp;
 +
\(~x~(y)\)
 +
\\
 +
\(f_{8}\)&amp;
 +
\(~x~~y~\)&amp;
 +
\((x)(y)\)&amp;
 +
\((x)~y~\)&amp;
 +
\(~x~(y)\)&amp;
 +
\(~x~~y~\)
 +
\\
 +
\hline
 +
\(f_{3}\)&amp;
 +
\((x)\)&amp;
 +
\( x \)&amp;
 +
\( x \)&amp;
 +
\((x)\)&amp;
 +
\((x)\)
 +
\\
 +
\(f_{12}\)&amp;
 +
\( x \)&amp;
 +
\((x)\)&amp;
 +
\((x)\)&amp;
 +
\( x \)&amp;
 +
\( x \)
 +
\\
 +
\hline
 +
\(f_{6}\)&amp;
 +
\( (x,y) \)&amp;
 +
\( (x,y) \)&amp;
 +
\(((x,y))\)&amp;
 +
\(((x,y))\)&amp;
 +
\( (x,y) \)
 +
\\
 +
\(f_{9}\)&amp;
 +
\(((x,y))\)&amp;
 +
\(((x,y))\)&amp;
 +
\( (x,y) \)&amp;
 +
\( (x,y) \)&amp;
 +
\(((x,y))\)
 +
\\
 +
\hline
 +
\(f_{5}\)&amp;
 +
\((y)\)&amp;
 +
\( y \)&amp;
 +
\((y)\)&amp;
 +
\( y \)&amp;
 +
\((y)\)
 +
\\
 +
\(f_{10}\)&amp;
 +
\( y \)&amp;
 +
\((y)\)&amp;
 +
\( y \)&amp;
 +
\((y)\)&amp;
 +
\( y \)
 +
\\
 +
\hline
 +
\(f_{7}\)&amp;
 +
\((~x~~y~)\)&amp;
 +
\(((x)(y))\)&amp;
 +
\(((x)~y~)\)&amp;
 +
\((~x~(y))\)&amp;
 +
\((~x~~y~)\)
 +
\\
 +
\(f_{11}\)&amp;
 +
\((~x~(y))\)&amp;
 +
\(((x)~y~)\)&amp;
 +
\(((x)(y))\)&amp;
 +
\((~x~~y~)\)&amp;
 +
\((~x~(y))\)
 +
\\
 +
\(f_{13}\)&amp;
 +
\(((x)~y~)\)&amp;
 +
\((~x~(y))\)&amp;
 +
\((~x~~y~)\)&amp;
 +
\(((x)(y))\)&amp;
 +
\(((x)~y~)\)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(((x)(y))\)&amp;
 +
\((~x~~y~)\)&amp;
 +
\((~x~(y))\)&amp;
 +
\(((x)~y~)\)&amp;
 +
\(((x)(y))\)
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
\(1\)&amp;
 +
\(1\)&amp;
 +
\(1\)&amp;
 +
\(1\)&amp;
 +
\(1\)
 +
\\
 +
\hline\hline
 +
\multicolumn{2}{|c||}{Fixed Point Total}&amp;
 +
4&amp;
 +
4&amp;
 +
4&amp;
 +
16
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
</pre>
 +
 +
<pre>
 +
$latex
 +
\begin{tabular}{|c|c||c|c|c|c|}
 +
\multicolumn{6}{c}{Table A4. \(\mathrm{D}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\
 +
\hline
 +
&amp;
 +
\(~~~~~~~~ f ~~~~~~~~\)&amp;
 +
\(\mathrm{D}f|_{~\mathrm{d}x\;\mathrm{d}y~}~\)&amp;
 +
\(\mathrm{D}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)&amp;
 +
\(\mathrm{D}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)&amp;
 +
\(\mathrm{D}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\)
 +
\\
 +
\hline\hline
 +
\( f_{0} \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\( f_{1} \)&amp;
 +
\( (x)(y) \)&amp;
 +
\( ((x,y)) \)&amp;
 +
\( (y) \)&amp;
 +
\( (x) \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{2} \)&amp;
 +
\( (x)~y~ \)&amp;
 +
\( (x,y) \)&amp;
 +
\( y \)&amp;
 +
\( (x) \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{4} \)&amp;
 +
\( ~x~(y) \)&amp;
 +
\( (x,y) \)&amp;
 +
\( (y) \)&amp;
 +
\( x \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{8} \)&amp;
 +
\( ~x~~y~ \)&amp;
 +
\( ((x,y)) \)&amp;
 +
\( y \)&amp;
 +
\( x \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\( f_{3} \)&amp;
 +
\( (x) \)&amp;
 +
\( 1 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{12} \)&amp;
 +
\( x \)&amp;
 +
\( 1 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\( f_{6} \)&amp;
 +
\( (x,y) \)&amp;
 +
\( 0 \)&amp;
 +
\( 1 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{9} \)&amp;
 +
\( ((x,y)) \)&amp;
 +
\( 0 \)&amp;
 +
\( 1 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\( f_{5} \)&amp;
 +
\( (y) \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{10} \)&amp;
 +
\( y  \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\( f_{7} \)&amp;
 +
\( (~x~~y~) \)&amp;
 +
\( ((x,y)) \)&amp;
 +
\( y \)&amp;
 +
\( x \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{11}\) &amp;
 +
\( (~x~(y)) \)&amp;
 +
\( (x,y) \)&amp;
 +
\( (y) \)&amp;
 +
\( x \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{13}\) &amp;
 +
\( ((x)~y~) \)&amp;
 +
\( (x,y) \)&amp;
 +
\( y \)&amp;
 +
\( (x) \)&amp;
 +
\( 0 \)
 +
\\
 +
\( f_{14} \)&amp;
 +
\( ((x)(y)) \)&amp;
 +
\( ((x,y)) \)&amp;
 +
\( (y) \)&amp;
 +
\( (x) \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
\( 1 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)&amp;
 +
\( 0 \)
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
</pre>
 +
 +
<pre>
 +
$latex
 +
\begin{tabular}{|c|c||c|c|c|c|}
 +
\multicolumn{6}{c}{Table A5. \(\mathrm{E}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\
 +
\hline
 +
&amp;
 +
\(~~~~~~~~ f ~~~~~~~~\)&amp;
 +
\(~~\mathrm{E}f|_{ x\;y }~~~\)&amp;
 +
\(~~\mathrm{E}f|_{ x~(y)}\,~~\)&amp;
 +
\(~~\mathrm{E}f|_{(x)~y }\,~~\)&amp;
 +
\(~~\mathrm{E}f|_{(x)(y)}\;~\)
 +
\\
 +
\hline\hline
 +
\(f_{0}\)&amp;
 +
0&amp;
 +
0&amp;
 +
0&amp;
 +
0&amp;
 +
0
 +
\\
 +
\hline
 +
\(f_{1}\)&amp;
 +
\((x)(y)\)&amp;
 +
~d\(x\)~~d\(y~\)&amp;
 +
~d\(x\)~(d\(y\))&amp;
 +
(d\(x\))~d\(y~\)&amp;
 +
(d\(x\))(d\(y\))
 +
\\
 +
\(f_{2}\)&amp;
 +
\((x)~y~\)&amp;
 +
~d\(x\)~(d\(y\))&amp;
 +
~d\(x\)~~d\(y~\)&amp;
 +
(d\(x\))(d\(y\))&amp;
 +
(d\(x\))~d\(y~\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(~x~(y)\)&amp;
 +
(d\(x\))~d\(y~\)&amp;
 +
(d\(x\))(d\(y\))&amp;
 +
~d\(x\)~~d\(y~\)&amp;
 +
~d\(x\)~(d\(y\))
 +
\\
 +
\(f_{8}\)&amp;
 +
\(~x~~y~\)&amp;
 +
(d\(x\))(d\(y\))&amp;
 +
(d\(x\))~d\(y~\)&amp;
 +
~d\(x\)~(d\(y\))&amp;
 +
~d\(x\)~~d\(y~\)
 +
\\
 +
\hline
 +
\(f_{3}\)&amp;
 +
\((x)\)&amp;
 +
d\(x\) &amp;
 +
d\(x\) &amp;
 +
(d\(x\))&amp;
 +
(d\(x\))
 +
\\
 +
\(f_{12}\)&amp;
 +
\( x \)&amp;
 +
(d\(x\))&amp;
 +
(d\(x\))&amp;
 +
d\(x\) &amp;
 +
d\(x\)
 +
\\
 +
\hline
 +
\(f_{6}\)&amp;
 +
\( (x,y) \)&amp;
 +
(d\(x\), d\(y\)) &amp;
 +
((d\(x\), d\(y\)))&amp;
 +
((d\(x\), d\(y\)))&amp;
 +
(d\(x\), d\(y\))
 +
\\
 +
\(f_{9}\)&amp;
 +
\(((x,y))\)&amp;
 +
((d\(x\), d\(y\)))&amp;
 +
(d\(x\), d\(y\)) &amp;
 +
(d\(x\), d\(y\)) &amp;
 +
((d\(x\), d\(y\)))
 +
\\
 +
\hline
 +
\(f_{5}\)&amp;
 +
\((y)\)&amp;
 +
d\(y\) &amp;
 +
(d\(y\))&amp;
 +
d\(y\) &amp;
 +
(d\(y\))
 +
\\
 +
\(f_{10}\)&amp;
 +
\( y \)&amp;
 +
(d\(y\))&amp;
 +
d\(y\) &amp;
 +
(d\(y\))&amp;
 +
d\(y\)
 +
\\
 +
\hline
 +
\(f_{7}\)&amp;
 +
\((~x~~y~)\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
((d\(x\))~d\(y\)~)&amp;
 +
(~d\(x\)~(d\(y\)))&amp;
 +
(~d\(x\)~~d\(y\)~)
 +
\\
 +
\(f_{11}\)&amp;
 +
\((~x~(y))\)&amp;
 +
((d\(x\))~d\(y\)~)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
(~d\(x\)~~d\(y\)~)&amp;
 +
(~d\(x\)~(d\(y\)))
 +
\\
 +
\(f_{13}\)&amp;
 +
\(((x)~y~)\)&amp;
 +
(~d\(x\)~(d\(y\)))&amp;
 +
(~d\(x\)~~d\(y\)~)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
((d\(x\))~d\(y\)~)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(((x)(y))\)&amp;
 +
(~d\(x\)~~d\(y\)~)&amp;
 +
(~d\(x\)~(d\(y\)))&amp;
 +
((d\(x\))~d\(y\)~)&amp;
 +
((d\(x\))(d\(y\)))
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
1&amp;
 +
1&amp;
 +
1&amp;
 +
1&amp;
 +
1
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
 +
&nbsp;
 +
$latex
 +
\begin{tabular}{|c|c||c|c|c|c|}
 +
\multicolumn{6}{c}{Table A6. \(\mathrm{D}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\
 +
\hline
 +
&amp;
 +
\(~~~~~~~~ f ~~~~~~~~\)&amp;
 +
\(~~\mathrm{D}f|_{ x\;y }~~~\)&amp;
 +
\(~~\mathrm{D}f|_{ x~(y)}\,~~\)&amp;
 +
\(~~\mathrm{D}f|_{(x)~y }\,~~\)&amp;
 +
\(~~\mathrm{D}f|_{(x)(y)}\,~\)
 +
\\
 +
\hline\hline
 +
\(f_{0}\)&amp;
 +
0&amp;
 +
0&amp;
 +
0&amp;
 +
0&amp;
 +
0
 +
\\
 +
\hline
 +
\(f_{1}\)&amp;
 +
\((x)(y)\)&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))
 +
\\
 +
\(f_{2}\)&amp;
 +
\((x)~y~\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~(d\(x\))~d\(y~~\)
 +
\\
 +
\(f_{4}\)&amp;
 +
\(~x~(y)\)&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
~~d\(x\)~(d\(y\))~
 +
\\
 +
\(f_{8}\)&amp;
 +
\(~x~~y~\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~~d\(x\)~~d\(y~~\)
 +
\\
 +
\hline
 +
\(f_{3}\)&amp;
 +
\((x)\)&amp;
 +
d\(x\)&amp;
 +
d\(x\)&amp;
 +
d\(x\)&amp;
 +
d\(x\)
 +
\\
 +
\(f_{12}\)&amp;
 +
\( x \)&amp;
 +
d\(x\)&amp;
 +
d\(x\)&amp;
 +
d\(x\)&amp;
 +
d\(x\)
 +
\\
 +
\hline
 +
\(f_{6}\)&amp;
 +
\( (x,y) \)&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))
 +
\\
 +
\(f_{9}\)&amp;
 +
\(((x,y))\)&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))&amp;
 +
(d\(x\), d\(y\))
 +
\\
 +
\hline
 +
\(f_{5}\)&amp;
 +
\((y)\)&amp;
 +
d\(y\)&amp;
 +
d\(y\)&amp;
 +
d\(y\)&amp;
 +
d\(y\)
 +
\\
 +
\(f_{10}\)&amp;
 +
\( y \)&amp;
 +
d\(y\)&amp;
 +
d\(y\)&amp;
 +
d\(y\)&amp;
 +
d\(y\)
 +
\\
 +
\hline
 +
\(f_{7}\)&amp;
 +
\((~x~~y~)\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~~d\(x\)~~d\(y~~\)
 +
\\
 +
\(f_{11}\)&amp;
 +
\((~x~(y))\)&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
~~d\(x\)~(d\(y\))~
 +
\\
 +
\(f_{13}\)&amp;
 +
\(((x)~y~)\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))&amp;
 +
~(d\(x\))~d\(y~~\)
 +
\\
 +
\(f_{14}\)&amp;
 +
\(((x)(y))\)&amp;
 +
~~d\(x\)~~d\(y~~\)&amp;
 +
\;d\(x\)~(d\(y\))~&amp;
 +
~(d\(x\))~d\(y~~\)&amp;
 +
((d\(x\))(d\(y\)))
 +
\\
 +
\hline
 +
\(f_{15}\)&amp;
 +
1&amp;
 +
0&amp;
 +
0&amp;
 +
0&amp;
 +
0
 +
\\
 +
\hline
 +
\end{tabular}&amp;fg=000000$
 +
</pre>
 +
 
==Work 2==
 
==Work 2==
   −
* HTML and LaTeX markup examples from [http://inquiryintoinquiry.com/work/work-2/ Inquiry Into Inquiry &bull; Work 2].
+
* Examples of HTML and LaTeX markup from [http://inquiryintoinquiry.com/work/work-2/ Inquiry Into Inquiry &bull; Work 2]
    
===Array Test===
 
===Array Test===
12,080

edits