Changes

Line 10,918: Line 10,918:     
<ol>
 
<ol>
<li>A sign relation <math>L\!</math> has a non-deterministic denotation if its dyadic component <math>L_{SO}\!</math> (the converse of <math>L_{OS}\!</math>) is not a function <math>L_{SO} : S \to O,\!</math> in other words, if there are signs in <math>S\!</math> with missing or multiple objects in <math>O.\!</math></li>
+
<li>A sign relation <math>L\!</math> has a non-deterministic denotation if its dyadic component <math>L_{SO}\!</math> is not a function <math>L_{SO} : S \to O,\!</math> in other words, if there are signs in <math>S\!</math> with missing or multiple objects in <math>O.\!</math></li>
    
<li>A sign relation <math>L\!</math> has a non-deterministic connotation if its dyadic component <math>L_{SI}\!</math> is not a function <math>L_{SI} : S \to I,\!</math> in other words, if there are signs in <math>S\!</math> with missing or multiple interpretants in <math>I.\!</math>  As a rule, sign relations are rife with this variety of non-determinism, but it is usually felt to be under control so long as <math>L_{SI}\!</math> remains close to being an equivalence relation.</li>
 
<li>A sign relation <math>L\!</math> has a non-deterministic connotation if its dyadic component <math>L_{SI}\!</math> is not a function <math>L_{SI} : S \to I,\!</math> in other words, if there are signs in <math>S\!</math> with missing or multiple interpretants in <math>I.\!</math>  As a rule, sign relations are rife with this variety of non-determinism, but it is usually felt to be under control so long as <math>L_{SI}\!</math> remains close to being an equivalence relation.</li>
12,080

edits