Line 9,093: |
Line 9,093: |
| | | |
| ==Current Work== | | ==Current Work== |
− |
| |
− | <br>
| |
− |
| |
− | The connotative components <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> can be viewed as digraphs on the eight points of the syntactic domain <math>S.\!</math> The arcs of these digraphs are given as follows.
| |
− |
| |
− | <ol>
| |
− | <li><math>\operatorname{Con}^1 (L_\text{A})\!</math> inherits from <math>L_\text{A}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle}.\!</math> The reflective extension <math>\operatorname{Ref}^1 (L_\text{A})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math></li>
| |
− |
| |
− | <li><math>\operatorname{Con}^1 (L_\text{B})\!</math> inherits from <math>L_\text{B}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle}.\!</math> The reflective extension <math>\operatorname{Ref}^1 (L_\text{B})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math></li>
| |
− | </ol>
| |
− |
| |
− | Taken as transition digraphs, <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> highlight the associations between signs in <math>\operatorname{Ref}^1 (L_\text{A})\!</math> and <math>\operatorname{Ref}^1 (L_\text{B}),\!</math> respectively.
| |
| | | |
| <br> | | <br> |