Line 10,821: |
Line 10,821: |
| Taken as transition digraphs, <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> summarize the upshots, end results, or effective steps of computation that are involved in the respective evaluations of signs in <math>S\!</math> by <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}).\!</math> | | Taken as transition digraphs, <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> summarize the upshots, end results, or effective steps of computation that are involved in the respective evaluations of signs in <math>S\!</math> by <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}).\!</math> |
| | | |
− | <pre>
| + | The connotative components <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> can be viewed as digraphs on the eight points of the syntactic domain <math>S.\!</math> The arcs of these digraphs are given as follows. |
− | The connotative components Con1 (A) and Con1 (B) can be pictured as digraphs on the eight points of the syntactic domain S. The arcs are given as follows: | |
| | | |
− | 1. Con1 (A) inherits from A the structure of a SER on S<1>, having a sling on each of the points in S<1> and two way arcs on the pairs {<A>, <i>} and {<B>, <u>}. The reflective extension Ref1(A) adds a sling on each point of S<2>, creating a SER on S. | + | <ol> |
| + | <li><math>\operatorname{Con}^1 (L_\text{A})\!</math> inherits from <math>L_\text{A}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle}.\!</math> The reflective extension <math>\operatorname{Ref}^1 (L_\text{A})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math></li> |
| | | |
− | 2. Con1 (B) inherits from B the structure of a SER on S<1>, having a sling on each of the points in S<1> and two way arcs on the pairs {<A>, <u>} and {<B>, <i>}. The reflective extension Ref1(B) adds a sling on each point of S<2>, creating a SER on S.
| + | <li><math>\operatorname{Con}^1 (L_\text{B})\!</math> inherits from <math>L_\text{B}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle}.\!</math> The reflective extension <math>\operatorname{Ref}^1 (L_\text{B})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math></li> |
| + | </ol> |
| | | |
− | Taken as transition digraphs, Con1 (A) and Con1 (B) highlight the associations between signs in Ref1 (A) and Ref1 (B), respectively. | + | Taken as transition digraphs, <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> highlight the associations between signs in <math>\operatorname{Ref}^1 (L_\text{A})\!</math> and <math>\operatorname{Ref}^1 (L_\text{B}),\!</math> respectively. |
| | | |
| + | <pre> |
| The SER given by Con1 (A) for interpreter A has the semantic equations: | | The SER given by Con1 (A) for interpreter A has the semantic equations: |
| | | |