Line 9,096: |
Line 9,096: |
| <br> | | <br> |
| | | |
− | The denotative components <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> can be viewed as digraphs on the 10 points of the world set <math>W.\!</math> The arcs of these digraphs are given as follows. | + | The connotative components <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> can be viewed as digraphs on the eight points of the syntactic domain <math>S.\!</math> The arcs of these digraphs are given as follows. |
| | | |
| <ol> | | <ol> |
− | <li><math>\operatorname{Den}^1 (L_\text{A})\!</math> has an arc from each point of <math>[\text{A}]_\text{A} = \{ {}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{i}{}^{\rangle} \}\!</math> to <math>\text{A}\!</math> and from each point of <math>[\text{B}]_\text{A} = \{ {}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{u} {}^{\rangle} \}\!</math> to <math>\text{B}.\!</math></li> | + | <li><math>\operatorname{Con}^1 (L_\text{A})\!</math> inherits from <math>L_\text{A}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle}.\!</math></li> The reflective extension <math>\operatorname{Ref}^1 (L_\text{A})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math> |
| | | |
− | <li><math>\operatorname{Den}^1 (L_\text{B})\!</math> has an arc from each point of <math>[\text{A}]_\text{B} = \{ {}^{\langle} \text{A} {}^{\rangle}, {}^{\langle} \text{u}{}^{\rangle} \}\!</math> to <math>\text{A}\!</math> and from each point of <math>[\text{B}]_\text{B} = \{ {}^{\langle} \text{B} {}^{\rangle}, {}^{\langle} \text{i} {}^{\rangle} \}\!</math> to <math>\text{B}.\!</math></li> | + | <li><math>\operatorname{Con}^1 (L_\text{B})\!</math> inherits from <math>L_\text{B}\!</math> the structure of a semiotic equivalence relation on <math>S^{(1)},\!</math> having a sling on each point of <math>S^{(1)},\!</math> arcs in both directions between <math>{}^{\langle} \text{A} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{u}{}^{\rangle},\!</math> and arcs in both directions between <math>{}^{\langle} \text{B} {}^{\rangle}\!</math> and <math>{}^{\langle} \text{i}{}^{\rangle}.\!</math></li> The reflective extension <math>\operatorname{Ref}^1 (L_\text{B})\!</math> adds a sling on each point of <math>S^{(2)},\!</math> creating a semiotic equivalence relation on <math>S.\!</math> |
− | | |
− | <li>In the parts added by reflective extension <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> both have arcs from <math>{}^{\langle} s {}^{\rangle}\!</math> to <math>s,\!</math> for each <math>s \in S^{(1)}.\!</math></li>
| |
| </ol> | | </ol> |
| | | |
− | Taken as transition digraphs, <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> summarize the upshots, end results, or effective steps of computation that are involved in the respective evaluations of signs in <math>S\!</math> by <math>\operatorname{Ref}^1 (\text{A})\!</math> and <math>\operatorname{Ref}^1 (\text{B}).\!</math> | + | Taken as transition digraphs, <math>\operatorname{Con}^1 (L_\text{A})\!</math> and <math>\operatorname{Con}^1 (L_\text{B})\!</math> highlight the associations between signs in <math>\operatorname{Ref}^1 (L_\text{A})\!</math> and <math>\operatorname{Ref}^1 (L_\text{B}),\!</math> respectively. |
| | | |
| <br> | | <br> |