Changes

Line 10,808: Line 10,808:     
The dyadic components of sign relations can be given graph-theoretic representations, namely, as ''digraphs'' (directed graphs), that provide concise pictures of their structural and potential dynamic properties.  By way of terminology, a directed edge <math>(x, y)\!</math> is called an ''arc'' from point <math>x\!</math> to point <math>y,\!</math> and a self-loop <math>(x, x)\!</math> is called a ''sling'' at <math>x.\!</math>
 
The dyadic components of sign relations can be given graph-theoretic representations, namely, as ''digraphs'' (directed graphs), that provide concise pictures of their structural and potential dynamic properties.  By way of terminology, a directed edge <math>(x, y)\!</math> is called an ''arc'' from point <math>x\!</math> to point <math>y,\!</math> and a self-loop <math>(x, x)\!</math> is called a ''sling'' at <math>x.\!</math>
 +
 +
The denotative components <math>\operatorname{Den}^1 (L_\text{A})\!</math> and <math>\operatorname{Den}^1 (L_\text{B})\!</math> can be viewed as digraphs on the 10 points of the world set <math>W.\!</math>  The arcs of these digraphs are given as follows.
    
<pre>
 
<pre>
The denotative components Den1 (A) and Den1 (B) can be viewed as digraphs on the 10 points of the world set W.  The arcs of these digraphs are given as follows:
  −
   
1. Den1 (A) has an arc from each point of [A]A = {<A>, <i>} to A and from each point of [B]A = {<B>, <u>} to B.
 
1. Den1 (A) has an arc from each point of [A]A = {<A>, <i>} to A and from each point of [B]A = {<B>, <u>} to B.
  
12,080

edits