Changes

Line 8,786: Line 8,786:  
If <math>L\!</math> is visualized as a solid body in the 3-dimensional space <math>X \times Y \times Z,\!</math> then <math>\operatorname{Proj}^{(2)}(L)\!</math> can be visualized as the arrangement or ordered collection of shadows it throws on the <math>XY,\!</math> <math>XZ,\!</math> and <math>YZ\!</math> planes, respectively.
 
If <math>L\!</math> is visualized as a solid body in the 3-dimensional space <math>X \times Y \times Z,\!</math> then <math>\operatorname{Proj}^{(2)}(L)\!</math> can be visualized as the arrangement or ordered collection of shadows it throws on the <math>XY,\!</math> <math>XZ,\!</math> and <math>YZ\!</math> planes, respectively.
   −
A couple of set-theoretic constructions are useful here, in particular for describing the source and target domains of the projection operator <math>\operatorname{Proj}^{(2)}.\!</math>
+
A couple of set-theoretic constructions are worth introducing at this point, in particular for describing the source and target domains of the projection operator <math>\operatorname{Proj}^{(2)}.\!</math>
    
<pre>
 
<pre>
12,080

edits