Changes

Line 248: Line 248:  
To say that a relation <math>L \subseteq X \times Y\!</math> is ''totally tubular'' at <math>X\!</math> is to say that <math>L\!</math> is 1-regular at <math>X.\!</math>  Thus, we may formalize the following definitions:
 
To say that a relation <math>L \subseteq X \times Y\!</math> is ''totally tubular'' at <math>X\!</math> is to say that <math>L\!</math> is 1-regular at <math>X.\!</math>  Thus, we may formalize the following definitions:
   −
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
Line 261: Line 261:  
|}
 
|}
   −
In the case of a 2-adic relation <math>L \subseteq X \times Y</math> that has the qualifications of a function <math>f : X \to Y,</math> there are a number of further differentia that arise:
+
In the case of a 2-adic relation <math>L \subseteq X \times Y\!</math> that has the qualifications of a function <math>f : X \to Y,\!</math> there are a number of further differentia that arise.
   −
{| align="center" cellspacing="6" width="90%"
+
{| align="center" cellspacing="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
12,080

edits