Changes

cleanup
Line 1,499: Line 1,499:     
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits  is odd.
 
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits  is odd.
 +
 +
A + B = (A ∧ !B) ∨ (!A ∧ B)
 +
      = {(A ∧ !B) ∨ !A} ∧ {(A ∧ !B) ∨ B}
 +
      = {(A ∨ !A) ∧ (!B ∨ !A)} ∧ {(A ∨ B) ∧ (!B ∨ B)}
 +
      = (!A ∨ !B) ∧ (A ∨ B)
 +
      = !(A ∧ B) ∧ (A ∨ B)
 +
 +
 +
p + q = (p ∧ !q)  ∨ (!p ∧ B)
 +
 +
      = {(p ∧ !q) ∨ !p} ∧ {(p ∧ !q) ∨ q}
 +
 +
      = {(p ∨ !q) ∧ (!q ∨ !p)} ∧ {(p ∨ q) ∧ (!q ∨ q)}
 +
 +
      = (!p ∨ !q) ∧ (p ∨ q)
 +
 +
      = !(p ∧ q)  ∧ (p ∨ q)
 +
 +
 +
p + q = (p ∧ ~q)  ∨ (~p ∧ q)
 +
 +
      = ((p ∧ ~q) ∨ ~p) ∧ ((p ∧ ~q) ∨ q)
 +
 +
      = ((p ∨ ~q) ∧ (~q ∨ ~p)) ∧ ((p ∨ q) ∧ (~q ∨ q))
 +
 +
      = (~p ∨ ~q) ∧ (p ∨ q)
 +
 +
      = ~(p ∧ q)  ∧ (p ∨ q)
 +
 +
: <math>\begin{matrix}
 +
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
 +
& = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\
 +
& = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\
 +
& = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\
 +
& = & \lnot (p \land q) & \land & (p \lor q)
 +
\end{matrix}</math>
    
====[[Logical implication]]====
 
====[[Logical implication]]====
Line 1,568: Line 1,604:  
|}
 
|}
 
<br>
 
<br>
  −
===Exclusive Disjunction===
  −
  −
A + B = (A &#8743; !B) &#8744; (!A &#8743; B)
  −
      = {(A &#8743; !B) &#8744; !A} &#8743; {(A &#8743; !B) &#8744; B}
  −
      = {(A &#8744; !A) &#8743; (!B &#8744; !A)} &#8743; {(A &#8744; B) &#8743; (!B &#8744; B)}
  −
      = (!A &#8744; !B) &#8743; (A &#8744; B)
  −
      = !(A &#8743; B) &#8743; (A &#8744; B)
  −
  −
  −
p + q = (p &#8743; !q)  &#8744; (!p &#8743; B)
  −
  −
      = {(p &#8743; !q) &#8744; !p} &#8743; {(p &#8743; !q) &#8744; q}
  −
  −
      = {(p &#8744; !q) &#8743; (!q &#8744; !p)} &#8743; {(p &#8744; q) &#8743; (!q &#8744; q)}
  −
  −
      = (!p &#8744; !q) &#8743; (p &#8744; q)
  −
  −
      = !(p &#8743; q)  &#8743; (p &#8744; q)
  −
  −
  −
p + q = (p &#8743; ~q)  &#8744; (~p &#8743; q)
  −
  −
      = ((p &#8743; ~q) &#8744; ~p) &#8743; ((p &#8743; ~q) &#8744; q)
  −
  −
      = ((p &#8744; ~q) &#8743; (~q &#8744; ~p)) &#8743; ((p &#8744; q) &#8743; (~q &#8744; q))
  −
  −
      = (~p &#8744; ~q) &#8743; (p &#8744; q)
  −
  −
      = ~(p &#8743; q)  &#8743; (p &#8744; q)
  −
  −
: <math>\begin{matrix}
  −
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
  −
& = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\
  −
& = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\
  −
& = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\
  −
& = & \lnot (p \land q) & \land & (p \lor q)
  −
\end{matrix}</math>
      
==Relational Tables==
 
==Relational Tables==
12,089

edits