Changes

Line 4,135: Line 4,135:  
<br>
 
<br>
   −
If the world of <math>\text{A}\!</math> and <math>\text{B},\!</math> the set <math>W = \{ \text{A}, \text{B}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \}\!</math> is viewed abstractly, as an arbitrary set of six atomic points, then there are exactly <math>2^6 = 64\!</math> ''abstract properties'' or ''potential attributes'' that might be applied to or recognized in these points.  The elements of <math>W\!</math> that possess a given property form a subset of <math>W\!</math> called the ''extension'' of that property.  Thus the extensions of abstract properties are exactly the subsets of <math>W.\!</math>  The set of all subsets of <math>W\!</math> is called the ''power set'' of <math>W,\!</math> notated as <math>\operatorname{Pow}(W)\!</math> or <math>\mathcal{P}(W).\!</math> In order to make this way of talking about properties consistent with the previous definition of reality, it is necessary to say that one potential property is never realized, since no point has it, and its extension is the empty set <math>\varnothing = \{ \}.\!</math>  All the ''natural'' properties of points that one observes in a concrete situation, properties whose extensions are known as ''natural kinds'', can be recognized among the ''abstract'', ''arbitrary'', or ''set-theoretic'' properties that are systematically generated in this way.  Typically, however, many of these abstract properties will not be recognized as falling among the more natural kinds.
+
If the world of <math>\text{A}\!</math> and <math>\text{B},\!</math> the set <math>W = \{ \text{A}, \text{B}, {}^{\backprime\backprime} \text{A} {}^{\prime\prime}, {}^{\backprime\backprime} \text{B} {}^{\prime\prime}, {}^{\backprime\backprime} \text{i} {}^{\prime\prime}, {}^{\backprime\backprime} \text{u} {}^{\prime\prime} \},\!</math> is viewed abstractly, as an arbitrary set of six atomic points, then there are exactly <math>2^6 = 64\!</math> ''abstract properties'' or ''potential attributes'' that might be applied to or recognized in these points.  The elements of <math>W\!</math> that possess a given property form a subset of <math>W\!</math> called the ''extension'' of that property.  Thus the extensions of abstract properties are exactly the subsets of <math>W.\!</math>  The set of all subsets of <math>W\!</math> is called the ''power set'' of <math>W,\!</math> notated as <math>\operatorname{Pow}(W)\!</math> or <math>\mathcal{P}(W).\!</math> In order to make this way of talking about properties consistent with the previous definition of reality, it is necessary to say that one potential property is never realized, since no point has it, and its extension is the empty set <math>\varnothing = \{ \}.\!</math>  All the ''natural'' properties of points that one observes in a concrete situation, properties whose extensions are known as ''natural kinds'', can be recognized among the ''abstract'', ''arbitrary'', or ''set-theoretic'' properties that are systematically generated in this way.  Typically, however, many of these abstract properties will not be recognized as falling among the more natural kinds.
    
<pre>  
 
<pre>  
12,080

edits