− | Here <math>p\!</math> and <math>q\!</math> are propositional variables that stand for any propositions in a given language. In a statement of the form <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime},</math> the first term, <math>p\!</math>, is called the ''antecedent'' and the second term, <math>q\!</math>, is called the ''consequent'', while the statement as a whole is called either the ''conditional'' or the ''consequence''. Assuming that the conditional statement is true, then the truth of the antecedent is a ''sufficient condition'' for the truth of the consequent, while the truth of the consequent is a ''necessary condition'' for the truth of the antecedent. | + | Here <math>p\!</math> and <math>q\!</math> are propositional variables that stand for any propositions in a given language. In a statement of the form <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime},</math> the first term, <math>p,\!</math> is called the ''antecedent'' and the second term, <math>q,\!</math> is called the ''consequent'', while the statement as a whole is called either the ''conditional'' or the ''consequence''. Assuming that the conditional statement is true, then the truth of the antecedent is a ''sufficient condition'' for the truth of the consequent, while the truth of the consequent is a ''necessary condition'' for the truth of the antecedent. |
| '''Note.''' Many writers draw a technical distinction between the form <math>{}^{\backprime\backprime} p ~\text{implies}~ q {}^{\prime\prime}</math> and the form <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime}.</math> In this usage, writing <math>{}^{\backprime\backprime} p ~\text{implies}~ q {}^{\prime\prime}</math> asserts the existence of a certain relation between the logical value of <math>p\!</math> and the logical value of <math>q,\!</math> whereas writing <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime}</math> merely forms a compound statement whose logical value is a function of the logical values of <math>p\!</math> and <math>q.\!</math> This will be discussed in detail below. | | '''Note.''' Many writers draw a technical distinction between the form <math>{}^{\backprime\backprime} p ~\text{implies}~ q {}^{\prime\prime}</math> and the form <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime}.</math> In this usage, writing <math>{}^{\backprime\backprime} p ~\text{implies}~ q {}^{\prime\prime}</math> asserts the existence of a certain relation between the logical value of <math>p\!</math> and the logical value of <math>q,\!</math> whereas writing <math>{}^{\backprime\backprime} \text{if}~ p ~\text{then}~ q {}^{\prime\prime}</math> merely forms a compound statement whose logical value is a function of the logical values of <math>p\!</math> and <math>q.\!</math> This will be discussed in detail below. |
− | Some logicians draw a firm distinction between the conditional connective, the symbol <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime},</math> and the implication relation, the object denoted by the symbol <math>{}^{\backprime\backprime} \Rightarrow {}^{\prime\prime}.</math>) These logicians use the phrase ''if–then'' for the conditional connective and the term ''implies'' for the implication relation. Some explain the difference by saying that the conditional is the ''contemplated'' relation while the implication is the ''asserted'' relation. In most fields of mathematics, it is treated as a variation in the usage of the single sign <math>{}^{\backprime\backprime} \Rightarrow {}^{\prime\prime},</math> not requiring two separate signs. Not all of those who use the sign <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime}</math> for the conditional connective regard it as a sign that denotes any kind of object, but treat it as a so-called ''syncategorematic sign'', that is, a sign with a purely syntactic function. For the sake of clarity and simplicity in the present introduction, it is convenient to use the two-sign notation, but allow the sign <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime}</math> to denote the [[boolean function]] that is associated with the [[truth table]] of the material conditional. These considerations result in the following scheme of notation. | + | Some logicians draw a firm distinction between the conditional connective, the symbol <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime},</math> and the implication relation, the object denoted by the symbol <math>{}^{\backprime\backprime} \Rightarrow {}^{\prime\prime}.</math> These logicians use the phrase ''if–then'' for the conditional connective and the term ''implies'' for the implication relation. Some explain the difference by saying that the conditional is the ''contemplated'' relation while the implication is the ''asserted'' relation. In most fields of mathematics, it is treated as a variation in the usage of the single sign <math>{}^{\backprime\backprime} \Rightarrow {}^{\prime\prime},</math> not requiring two separate signs. Not all of those who use the sign <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime}</math> for the conditional connective regard it as a sign that denotes any kind of object, but treat it as a so-called ''syncategorematic sign'', that is, a sign with a purely syntactic function. For the sake of clarity and simplicity in the present introduction, it is convenient to use the two-sign notation, but allow the sign <math>{}^{\backprime\backprime} \rightarrow {}^{\prime\prime}</math> to denote the [[boolean function]] that is associated with the [[truth table]] of the material conditional. These considerations result in the following scheme of notation. |