Changes

→‎Table Work: + table data
Line 25: Line 25:  
: In a group written additively, the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math>
 
: In a group written additively, the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math>
   −
===Table Work===
+
==Table Work==
    
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
Line 63: Line 63:  
| <math>\operatorname{e}</math>
 
| <math>\operatorname{e}</math>
 
|}
 
|}
 +
 +
<pre>
 +
Table 32.1  Scheme of a Group Multiplication Table
 +
* x0 ... xj ...
 +
x0 x0*x0 ... x0*xj ...
 +
... ... ... ... ...
 +
xi xi*x0 ... xi*xj ...
 +
... ... ... ... ...
 +
</pre>
 +
 +
<pre>
 +
Table 32.2  Scheme of the Regular Ante-Representation
 +
Element Function as Set of Ordered Pairs of Elements
 +
x0 { <x0, x0*x0>,  ...,  <xj, x0*xj>,  ...,    }
 +
...
 +
xi { <x0, xi*x0>,  ...,  <xj, xi*xj>,  ...,    }
 +
...
 +
</pre>
 +
 +
<pre>
 +
Table 32.3  Scheme of the Regular Post-Representation
 +
Element Function as Set of Ordered Pairs of Elements
 +
x0 { <x0, x0*x0>,  ...,  <xj, xj*x0>,  ...,    }
 +
...
 +
xi { <x0, x0*xi>,  ...,  <xj, xj*xi>,  ...,    }
 +
...
 +
</pre>
12,080

edits