Line 19: |
Line 19: |
| ====Version 2==== | | ====Version 2==== |
| | | |
− | : In a semigroup <math>\underline{X} = (X, +, 0),\!</math> the <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> is notated as <math>nx\!</math> and defined for every positive integer <math>n\!</math> in the following manner. Proceeding recursively, let <math>1x = x\!</math> and let <math>nx = (n-1)x + x\!</math> for all <math>n > 1.\!</math> | + | : In a semigroup written additively, the <math>n^\text{th}\!</math> '''multiple''' of an element <math>x\!</math> is notated as <math>nx\!</math> and defined for every positive integer <math>n\!</math> in the following manner. Proceeding recursively, let <math>1x = x\!</math> and let <math>nx = (n-1)x + x\!</math> for all <math>n > 1.\!</math> |
| | | |
− | : In a monoid <math>\underline{X} = (X, +, 0),\!</math> the multiple <math>nx\!</math> is defined for every non-negative integer <math>n\!</math> by letting <math>0x = 0\!</math> and proceeding the same way for <math>n > 0.\!</math> | + | : In a monoid written additively, the multiple <math>nx\!</math> is defined for every non-negative integer <math>n\!</math> by letting <math>0x = 0\!</math> and proceeding the same way for <math>n > 0.\!</math> |
| | | |
− | : In a group <math>\underline{X} = (X, +, 0),\!</math> the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math> | + | : In a group written additively, the multiple <math>nx\!</math> is defined for every integer <math>n\!</math> by letting <math>nx = (-n)(-x)\!</math> for <math>n < 0\!</math> and proceeding the same way for <math>n \ge 0.\!</math> |