The next series of definitions develops the mathematical concepts of "homomorphism" and "isomorphism", special types of mappings between systems that serve to formalize the intuitive notions of structural analogy and abstract identity, respectively. In very rough terms, a "homomorphism" is a "structure preserving mapping" between systems, but only in the sense that it preserves some part or some aspect of the structure mapped, whereas an "isomorphism" is a correspondence that preserves all of the relevant structure. | The next series of definitions develops the mathematical concepts of "homomorphism" and "isomorphism", special types of mappings between systems that serve to formalize the intuitive notions of structural analogy and abstract identity, respectively. In very rough terms, a "homomorphism" is a "structure preserving mapping" between systems, but only in the sense that it preserves some part or some aspect of the structure mapped, whereas an "isomorphism" is a correspondence that preserves all of the relevant structure. |