16,517 bytes added
, 22:02, 19 May 2007
==Formula Help==
* [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula Mathematical formulas]
* [http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols Mathematical symbols]
==Bytes & Parses==
{| style="width:50%"
| ∈
| ∈
|-
| ε
| ε
|-
| <nowiki><math>\in</math></nowiki>
| <math>\in</math>
|-
| <nowiki><math>\in\!</math></nowiki>
| <math>\in\!</math>
|-
| <nowiki><math>\epsilon</math></nowiki>
| <math>\epsilon</math>
|-
| <nowiki><math>\epsilon\!</math></nowiki>
| <math>\epsilon\!</math>
|-
| <nowiki><math>\varepsilon</math></nowiki>
| <math>\varepsilon</math>
|-
| <nowiki><math>\varepsilon\!</math></nowiki>
| <math>\varepsilon\!</math>
|}
<br>
{| style="width:50%"
| &eta;
| η
|-
| <nowiki><math>\eta</math></nowiki>
| <math>\eta</math>
|-
| <nowiki><math>\eta\!</math></nowiki>
| <math>\eta\!</math>
|}
<br>
{| style="width:50%"
| &theta;
| θ
|-
| <nowiki><math>\theta</math></nowiki>
| <math>\theta</math>
|-
| <nowiki><math>\theta\!</math></nowiki>
| <math>\theta\!</math>
|-
| <nowiki><math>\vartheta</math></nowiki>
| <math>\vartheta</math>
|-
| <nowiki><math>\vartheta\!</math></nowiki>
| <math>\vartheta\!</math>
|}
<br>
{| style="width:50%"
| &chi;
| χ
|-
| <nowiki><math>\chi</math></nowiki>
| <math>\chi</math>
|-
| <nowiki><math>\chi\!</math></nowiki>
| <math>\chi\!</math>
|}
<br>
''x'' = ''x''<sub>''J''</sub> = ¢(''J'') = ''J''¢ = ''J'' ¢ = ''J''<sup>¢</sup> = ''J''<sup> ¢</sup>
''x'' = ''x''<sub>''J''</sub> = ¢(''J'') = ''J''¢ = ''J'' ¢ = ''J''<sup>¢</sup> = ''J''<sup> ¢</sup>
==Display==
===New===
:{| cellpadding=1 style="height:40px"
| <font face=georgia>'''W'''</font>
| :
| (
| [
| '''B'''<sup>''n''</sup>
| ]
| →
| [
| '''B'''<sup>''k''</sup>
| ]
| )
|
| →
|
| (
| [
| '''B'''<sup>''n''</sup>
| ×
| '''D'''<sup>''n''</sup>
| ]
| →
| [
| '''B'''<sup>''k''</sup>
| ×
| '''D'''<sup>''k''</sup>
| ]
| )
| .
|}
:{| style="height:80px; text-align:center; width:90%"
| align=left width=20%| Concrete type
| width=8% | <math>\epsilon</math>
| :
| (
| ''U''<sup>•</sup>
| →
| ''X''<sup>•</sup>
| )
| width=16% | →
| (
| E''U''<sup>•</sup>
| →
| ''X''<sup>•</sup>
| )
|-
| align=left width=20%| Abstract type
| width=8% | <math>\epsilon</math>
| :
| (
| ['''B'''<sup>''n''</sup>]
| →
| ['''B'''<sup>''k''</sup>]
| )
| width=16% | →
| (
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| →
| ['''B'''<sup>''k''</sup>]
| )
|}
:{| style="height:80px; text-align:center; width:90%"
| align=left width=20%| Concrete type
| width=8% | W
| :
| (
| ''U''<sup>•</sup>
| →
| ''X''<sup>•</sup>
| )
| width=16% | →
| (
| E''U''<sup>•</sup>
| →
| d''X''<sup>•</sup>
| )
|-
| align=left width=20%| Abstract type
| width=8% | W
| :
| (
| ['''B'''<sup>''n''</sup>]
| →
| ['''B'''<sup>''k''</sup>]
| )
| width=16% | →
| (
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| →
| ['''D'''<sup>''k''</sup>]
| )
|}
:{| style="height:80px; text-align:center; width:90%"
| width=6% | <math>\epsilon</math>''F''
| width=2% | :
| width=2% | (
| width=8% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | ''X''<sup>•</sup>
| width=4% | ⊆
| width=8% | E''X''<sup>•</sup>
| width=2% | )
| width=4% | <math>\cong</math>
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''B'''<sup>''k''</sup>]
| width=4% | ⊆
| width=16% | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| width=2% | )
|-
| width=6% | W''F''
| width=2% | :
| width=2% | (
| width=8% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | d''X''<sup>•</sup>
| width=4% | ⊆
| width=8% | E''X''<sup>•</sup>
| width=2% | )
| width=4% | <math>\cong</math>
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''D'''<sup>''k''</sup>]
| width=4% | ⊆
| width=16% | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| width=2% | )
|}
===Old===
:{| cellpadding=1 style="height:40px"
| <font face=georgia>'''W'''</font>
| :
| (
| [
| '''B'''<sup>''n''</sup>
| ]
| →
| [
| '''B'''<sup>''k''</sup>
| ]
| )
|
| →
|
| (
| [
| '''B'''<sup>''n''</sup>
| ×
| '''D'''<sup>''n''</sup>
| ]
| →
| [
| '''B'''<sup>''k''</sup>
| ×
| '''D'''<sup>''k''</sup>
| ]
| )
| .
|}
:{| style="height:80px; text-align:center; width:90%"
| align=left width=20%| Concrete type
| width=4% | <math>\epsilon</math>
| width=2% | :
| width=2% | (
| width=8% | ''U''<sup>•</sup>
| width=4% | →
| width=8% | ''X''<sup>•</sup>
| width=2% | )
| width=8% | →
| width=2% | (
| width=16% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | ''X''<sup>•</sup>
| width=2% | )
|-
| align=left width=20%| Abstract type
| width=4% | <math>\epsilon</math>
| width=2% | :
| width=2% | (
| width=8% | ['''B'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''B'''<sup>''k''</sup>]
| width=2% | )
| width=8% | →
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''B'''<sup>''k''</sup>]
| width=2% | )
|}
:{| style="height:80px; text-align:center; width:90%"
| align=left width=20%| Concrete type
| width=4% | W
| width=2% | :
| width=2% | (
| width=8% | ''U''<sup>•</sup>
| width=4% | →
| width=8% | ''X''<sup>•</sup>
| width=2% | )
| width=8% | →
| width=2% | (
| width=16% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | d''X''<sup>•</sup>
| width=2% | )
|-
| align=left width=20%| Abstract type
| width=4% | W
| width=2% | :
| width=2% | (
| width=8% | ['''B'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''B'''<sup>''k''</sup>]
| width=2% | )
| width=8% | →
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''D'''<sup>''k''</sup>]
| width=2% | )
|}
:{| style="height:80px; text-align:center; width:90%"
| width=6% | <math>\epsilon</math>''F''
| width=2% | :
| width=2% | (
| width=8% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | ''X''<sup>•</sup>
| width=4% | ⊆
| width=8% | E''X''<sup>•</sup>
| width=2% | )
| width=4% | <math>\cong</math>
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''B'''<sup>''k''</sup>]
| width=4% | ⊆
| width=16% | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| width=2% | )
|-
| width=6% | W''F''
| width=2% | :
| width=2% | (
| width=8% | E''U''<sup>•</sup>
| width=4% | →
| width=8% | d''X''<sup>•</sup>
| width=4% | ⊆
| width=8% | E''X''<sup>•</sup>
| width=2% | )
| width=4% | <math>\cong</math>
| width=2% | (
| width=16% | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| width=4% | →
| width=8% | ['''D'''<sup>''k''</sup>]
| width=4% | ⊆
| width=16% | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| width=2% | )
|}
==Epitext==
{| cellpadding=12 style="height:100px; width:100%; text-align:left"
|-
| <font color=red size="7">'''''Rosebud'''''</font>
|}
{| cellpadding=12 style="height:100px; width:100%; text-align:center"
|-
| <font color=red size="7">'''''Rosebud'''''</font>
|}
{| cellpadding=12 style="height:100px; width:100%; text-align:right"
|-
| <font color=red size="7">'''''Rosebud'''''</font>
|}
==Gallery==
<center>
<font size=7>’</font>
<font size=7>`´</font>
<font size=7>′</font>
‹ ›
〈 〉
<font face=system>( )</font>
<font face=system>(</font> , <font face=system>)</font>
</center>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| <font face="lucida calligraphy">A</font> = {''a''<sub>''i''</sub>} = {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>}
|-
| ''A'' = 〈<font face="lucida calligraphy">A</font>〉 = 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>〉= {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>›}
|-
| ''A''^ = (''A'' → '''B''')
|-
| ''A''<sup>•</sup> = [<font face="lucida calligraphy">A</font>] = [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>]
|}
<br>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| d<font face="lucida calligraphy">A</font> = {d''a''<sub>''i''</sub>} = {d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>}
|-
| d''A'' = 〈d<font face="lucida calligraphy">A</font>〉 = 〈d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉= {‹d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>›}
|-
| d''A''^ = (d''A'' → '''B''')
|-
| d''A''<sup>•</sup> = [d<font face="lucida calligraphy">A</font>] = [d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>]
|}
<br>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| E<font face="lucida calligraphy">A</font> = <font face="lucida calligraphy">A</font> ∪ d<font face="lucida calligraphy">A</font> = {''a''<sub>''i''</sub>} ∪ {d''a''<sub>''i''</sub>} = {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>}
|-
| E''A'' = 〈E<font face="lucida calligraphy">A</font>〉 = 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>〉= {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>›}
|-
| E''A''^ = (E''A'' → '''B''')
|-
| E''A''<sup>•</sup> = [E<font face="lucida calligraphy">A</font>] = [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>]
|}
<br>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| <font face="lucida calligraphy">X</font> = {''x''<sub>''i''</sub>} = {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}
|-
| ''X'' = 〈<font face="lucida calligraphy">X</font>〉 = 〈''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>〉= {‹''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>›}
|-
| ''X''^ = (''X'' → '''B''')
|-
| ''X''<sup>•</sup> = [<font face="lucida calligraphy">X</font>] = [''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>]
|}
<br>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| d<font face="lucida calligraphy">X</font> = {d''x''<sub>''i''</sub>} = {d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>}
|-
| d''X'' = 〈d<font face="lucida calligraphy">X</font>〉 = 〈d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>〉= {‹d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>›}
|-
| d''X''^ = (d''X'' → '''B''')
|-
| d''X''<sup>•</sup> = [d<font face="lucida calligraphy">X</font>] = [d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>]
|}
<br>
{| border=1 cellpadding=10 cellspacing=2 width=100%
| <font face="lucida calligraphy"><u>X</u></font> = {<u>''x''</u><sub>''i''</sub>} = {<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>}
|-
| <u>''X''</u> = 〈<font face="lucida calligraphy"><u>X</u></font>〉 = 〈<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>〉= {‹<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>›}
|-
| <u>''X''</u>^ = (<u>''X''</u> → '''B''')
|-
| <u>''X''</u><sup>•</sup> = [<font face="lucida calligraphy"><u>X</u></font>] = [<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>]
|}
<br>
''f'' : '''B'''<sup>''k''</sup> → '''B'''
''f'' : '''B'''<sup>''n''</sup> → '''B'''
''f''<sup>–1</sup>
<font face="lucida calligraphy">Pow</font>(''X'') = 2<sup>''X''</sup>
{| cellpadding=6
| Arbitrary
| →
| '''B'''<sup>''n''</sup> → '''B'''
| ''X'' → '''B'''
|-
| Basic
| <font face=symbol>'''¸>'''</font>
| '''B'''<sup>''n''</sup> <font face=symbol>'''¸>'''</font> '''B'''
| ''X'' <font face=symbol>'''¸>'''</font> '''B'''
|-
| Linear
| <font face=symbol>'''+>'''</font>
| '''B'''<sup>''n''</sup> <font face=symbol>'''+>'''</font> '''B'''
| ''X'' <font face=symbol>'''+>'''</font> '''B'''
|-
| Positive
| <font face=symbol>'''¥>'''</font>
| '''B'''<sup>''n''</sup> <font face=symbol>'''¥>'''</font> '''B'''
| ''X'' <font face=symbol>'''¥>'''</font> '''B'''
|-
| Singular
| <font face=symbol>'''××>'''</font>
| '''B'''<sup>''n''</sup> <font face=symbol>'''××>'''</font> '''B'''
| ''X'' <font face=symbol>'''××>'''</font> '''B'''
|}
The ''linear propositions'', {hom : '''B'''<sup>''n''</sup> → '''B'''} = ('''B'''<sup>''n''</sup> <font face=symbol>'''+>'''</font> '''B'''), may be expressed as sums of the following form:
: <math>\textstyle \sum_{i=1}^n e_i = e_1 + \ldots + e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 0.</math>
The ''positive propositions'', {pos : '''B'''<sup>''n''</sup> → '''B'''} = ('''B'''<sup>''n''</sup> <font face=symbol>'''¥>'''</font> '''B'''), may be expressed as products of the following form:
: <math>\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 1.</math>
The ''singular propositions'', {''x'' : '''B'''<sup>''n''</sup> → '''B'''} = ('''B'''<sup>''n''</sup> <font face=symbol>'''××>'''</font> '''B'''), may be expressed as products of the following form:
: <math>\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = (a_i) = \lnot a_i.</math>
<font face="lucida calligraphy">I</font> = {1, …, ''n''}.
''J'' ⊆ <font face="lucida calligraphy">I</font>
<font face="lucida calligraphy">J ⊆ I</font>
<font face="lucida calligraphy">A</font><sub>''J''</sub>
<font face="lucida calligraphy">A<sub>J</sub></font>
<font face="mt extra">l</font><sub>''J''</sub> : '''B'''<sup>''k''</sup> → '''B'''
<math>\ell_J : \mathbb{B}^k \to \mathbb{B}</math>
θ : ('''K'''<sup>''n''</sup> → '''K''') → '''K'''
<math>\theta</math> : ('''K'''<sup>''n''</sup> → '''K''') → '''K'''
<math>\theta\!</math> : ('''K'''<sup>''n''</sup> → '''K''') → '''K'''
<math>\vartheta</math> : ('''K'''<sup>''n''</sup> → '''K''') → '''K'''
<math>\vartheta\!</math> : ('''K'''<sup>''n''</sup> → '''K''') → '''K'''
<math>\chi\!</math> : ''X'' → <math>\bigcup_x \ \chi_x\!</math>
<math>\chi\!</math> : '''K'''<sup>''n''</sup> → (('''K'''<sup>''n''</sup> → '''K''') → '''K''')
<math>\chi\!</math> : ('''K'''<sup>''n''</sup> → '''K''') → ('''K'''<sup>''n''</sup> → '''K''')
<math>\cong</math>
<math>\lceil x \rceil</math>
{| cellpadding=6
| <u>''x''</u><sub>''i''</sub>(''x'')
| χ(''x'' ∈ ''L''<sub>''i''</sub>)
| <math>\lceil x \in L_i \rceil</math>
| ''L''<sub>''i''</sub>(''x'')
|-
| <u>''x''</u><sub>''i''</sub>(''x'')
| <math>\chi (x \in L_i)</math>
| <math>\lceil x \in L_i \rceil</math>
| ''L''<sub>''i''</sub>(''x'')
|}
{| cellpadding=4
| ‹0, 0, 0›
| <font face=system>‹0, 0, 0›</font>
|-
| ‹0, 0, 1›
| <font face=system>‹0, 0, 1›</font>
|-
| ‹0, 1, 0›
| <font face=system>‹0, 1, 0›</font>
|-
| ‹0, 1, 1›
| <font face=system>‹0, 1, 1›</font>
|-
| ‹1, 0, 0›
| <font face=system>‹1, 0, 0›</font>
|-
| ‹1, 0, 1›
| <font face=system>‹1, 0, 1›</font>
|-
| ‹1, 1, 0›
| <font face=system>‹1, 1, 0›</font>
|-
| ‹1, 1, 1›
| <font face=system>‹1, 1, 1›</font>
|}